Delete rotor - uncomplited merge

trigger
marcelb 9 months ago
parent 377e381037
commit e91c7f646d
  1. 239
      lib/rotor.hpp
  2. 374
      test/test.cpp

@ -1,239 +0,0 @@
#ifndef _ROTOR_
#define _ROTOT_
#include "runner.hpp"
#include "chrono"
#include <memory>
#include "iostream"
using namespace std;
using namespace marcelb;
using namespace asynco;
namespace marcelb {
namespace asynco {
/**
* Get the time in ms from the epoch
*/
int64_t rtime_ms() {
return chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
int64_t rtime_us() {
return chrono::duration_cast<chrono::microseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
namespace {
/**
* Intern class for timer async loop
*/
class timer_core {
public:
mutex hangon;
condition_variable cv;
function<void()> callback;
int64_t time;
int64_t next;
bool repeat;
bool stop;
/**
* Timer constructor, receives a callback function and time
*/
timer_core( function<void()> _callback, int64_t _time, bool _repeat):
callback(_callback), time(_time*1000), repeat(_repeat), stop(false) {
next = rtime_us() + time;
}
/**
* Stop timer
*/
void clear() {
// lock_guard<mutex> hang(hangon);
stop = true;
cv.notify_one();
}
/**
* Destruktor of timer, call stop
*/
~timer_core() {
clear();
}
};
/**
* Event loop for time events
*/
class rotor {
vector<shared_ptr<timer_core>> tcores;
mutex te_m;
bool rotating = true;
int64_t sampling;
condition_variable te_cv;
/**
* Loop method, started by the constructor in a separate runner
* It checks the events on the stack and sends the expired ones to the runner
*/
void loop() {
while (rotating) {
vector<shared_ptr<timer_core>>::iterator next_tc;
shared_ptr<timer_core> next_ptr;
{
unique_lock<mutex> te_l(te_m);
te_cv.wait(te_l, [this]{ return !tcores.empty() || rotating; });
if (!rotating) {
break;
}
next_tc = min_element( tcores.begin(), tcores.end(),
[](shared_ptr<timer_core> a, shared_ptr<timer_core> b ) {
return a->next < b->next;
}
);
next_ptr = *next_tc;
}
unique_lock<mutex> next_l(next_ptr->hangon);
next_ptr->cv.wait_for(next_l, chrono::microseconds(next_ptr->next - rtime_us()), [&next_ptr] () {
return next_ptr->stop;
});
if (next_ptr->stop) {
remove(next_tc);
} else {
_asyncon.put_task(next_ptr->callback);
if (next_ptr->repeat) {
next_ptr->next += next_ptr->time;
}
else {
remove(next_tc);
}
}
}
}
/**
* The method deletes a non-repeating or stopped event from the stack
*/
void remove(vector<shared_ptr<timer_core>>::iterator it) {
lock_guard<mutex> lock(te_m);
tcores.erase(it);
// te_cv.notify_one();
}
public:
/**
* Constructor for the rotor, starts the given loop by occupying one runner
*/
rotor() {
_asyncon.put_task( [&] () {
loop();
});
};
/**
* Adds a time event to the stack
*/
void insert(shared_ptr<timer_core> tcore) {
lock_guard<mutex> lock(te_m);
tcores.push_back(tcore);
te_cv.notify_one();
};
/**
* Returns the number of active events
*/
int active() {
return tcores.size();
}
/**
* Stops all active events and stops the rotor
*/
~rotor() {
for (int i=0; i<tcores.size(); i++) {
tcores[i]->clear();
}
rotating = false;
}
};
}
/**
* It is intended that there is only one global declaration
*/
static rotor _rotor;
/**
* Core class for pure async timer functions
*/
class _timer_intern {
shared_ptr<timer_core> tcore;
public:
_timer_intern(function<void()> _callback, int64_t _time, bool repeat) {
tcore = make_shared<timer_core>(_callback, _time, repeat);
_rotor.insert(tcore);
}
/**
* Stop interval
*/
void clear() {
tcore->clear();
}
};
/**
* Class interval for periodic execution of the callback in time in ms
*/
class interval : public _timer_intern {
public:
/**
* The constructor receives a callback function and an interval time
*/
interval( function<void()> _callback, int64_t _time):
_timer_intern(_callback, _time, true) {
}
};
/**
* Class interval for delayed callback execution in ms
*/
class timeout : public _timer_intern {
public:
/**
* The constructor receives a callback function and a delay time
*/
timeout( function<void()> _callback, int64_t delay):
_timer_intern(_callback, delay, false) {
}
};
}
}
#endif

@ -65,246 +65,246 @@ int main () {
// --------------- TIME ASYNCHRONOUS FUNCTIONS --------------
// /**
// * Init interval and timeout; clear interval and timeout
// */
// interval inter1 ([&]() {
// cout << "interval prvi " << rtime_ms() - start << endl;
// }, 1000);
// interval inter2 ([&]() {
// cout << "interval drugi " << rtime_ms() - start << endl;
// }, 2000);
// interval inter3 ([&]() {
// cout << "interval treći " << rtime_ms() - start << endl;
// }, 1000);
// interval inter4 ([&]() {
// // cout << "interval cetvrti " << rtime_ms() - start << endl;
// cout << "Ticks " << inter3.ticks() << endl;
// }, 500);
// interval inter5 ([&]() {
// cout << "interval peti " << rtime_ms() - start << endl;
// }, 2000);
// interval inter6 ([&]() {
// cout << "interval sesti " << rtime_ms() - start << endl;
// }, 3000);
// timeout time1 ( [&] () {
// cout << "Close interval 1 i 2 " << rtime_ms() - start << endl;
// inter1.stop();
// cout << "inter1.stop " << endl;
// inter2.stop();
// cout << "inter2.stop " << endl;
// }, 8000);
// timeout time2 ([&] () {
// cout << "Close interval 3 " << rtime_ms() - start << endl;
// inter3.stop();
// cout << "Stoped " << inter3.stoped() << endl;
// // time1.stop();
// }, 5000);
// if (time2.expired()) {
// cout << "isteko " << endl;
// } else {
// cout << "nije isteko " << endl;
// }
/**
* Init interval and timeout; clear interval and timeout
*/
interval inter1 ([&]() {
cout << "interval prvi " << rtime_ms() - start << endl;
}, 1000);
interval inter2 ([&]() {
cout << "interval drugi " << rtime_ms() - start << endl;
}, 2000);
interval inter3 ([&]() {
cout << "interval treći " << rtime_ms() - start << endl;
}, 1000);
interval inter4 ([&]() {
// cout << "interval cetvrti " << rtime_ms() - start << endl;
cout << "Ticks " << inter3.ticks() << endl;
}, 500);
interval inter5 ([&]() {
cout << "interval peti " << rtime_ms() - start << endl;
}, 2000);
interval inter6 ([&]() {
cout << "interval sesti " << rtime_ms() - start << endl;
}, 3000);
timeout time1 ( [&] () {
cout << "Close interval 1 i 2 " << rtime_ms() - start << endl;
inter1.stop();
cout << "inter1.stop " << endl;
inter2.stop();
cout << "inter2.stop " << endl;
}, 8000);
timeout time2 ([&] () {
cout << "Close interval 3 " << rtime_ms() - start << endl;
inter3.stop();
cout << "Stoped " << inter3.stoped() << endl;
// time1.stop();
}, 5000);
if (time2.expired()) {
cout << "isteko " << endl;
} else {
cout << "nije isteko " << endl;
}
// // sleep(6);
// sleep(6);
// if (time2.expired()) {
// cout << "isteko " << endl;
// } else {
// cout << "nije isteko " << endl;
// }
if (time2.expired()) {
cout << "isteko " << endl;
} else {
cout << "nije isteko " << endl;
}
// // // ------------------------ MAKE FUNCTIONS ASYNCHRONOUS -------------------------
// // ------------------------ MAKE FUNCTIONS ASYNCHRONOUS -------------------------
// /**
// * Run an function asyncronic
// */
/**
* Run an function asyncronic
*/
// atask( []() {
// sleep_for(2s); // only for simulate log duration function
// cout << "atask 1" << endl;
// return 5;
// });
atask( []() {
sleep_for(2s); // only for simulate log duration function
cout << "atask 1" << endl;
return 5;
});
// /**
// * Call not lambda function
// */
/**
* Call not lambda function
*/
// atask (notLambdaFunction);
atask (notLambdaFunction);
// wait (
// atask (
// notLambdaFunction
// )
// );
wait (
atask (
notLambdaFunction
)
);
// /**
// * Call class method
// */
/**
* Call class method
*/
// clm classes;
// atask( [&classes] () {
// classes.classMethode();
// });
clm classes;
atask( [&classes] () {
classes.classMethode();
});
// sleep(5);
sleep(5);
// /**
// * Wait after runned as async
// */
/**
* Wait after runned as async
*/
// auto a = atask( []() {
// sleep_for(2s); // only for simulate log duration function
// cout << "atask 2" << endl;
// return 5;
// });
auto a = atask( []() {
sleep_for(2s); // only for simulate log duration function
cout << "atask 2" << endl;
return 5;
});
// cout << wait(a) << endl;
// cout << "print after atask 2" << endl;
cout << wait(a) << endl;
cout << "print after atask 2" << endl;
// /**
// * Wait async function call and use i cout
// */
/**
* Wait async function call and use i cout
*/
// cout << wait(atask( [] () {
// sleep_for(chrono::seconds(1)); // only for simulate log duration function
// cout << "wait end" << endl;
// return 4;
// })) << endl;
cout << wait(atask( [] () {
sleep_for(chrono::seconds(1)); // only for simulate log duration function
cout << "wait end" << endl;
return 4;
})) << endl;
// /**
// * Sleep with timeout sleep implement
// */
/**
* Sleep with timeout sleep implement
*/
// sleep_to(3000);
// cout << "sleep_to " << rtime_ms() - start << endl;
sleep_to(3000);
cout << "sleep_to " << rtime_ms() - start << endl;
// /**
// * Catch promise reject
// */
/**
* Catch promise reject
*/
// try {
// promise_reject(3000);
// } catch (runtime_error err) {
// cout<< err.what() << endl;
// }
try {
promise_reject(3000);
} catch (runtime_error err) {
cout<< err.what() << endl;
}
// cout << "promise_reject " << rtime_ms() - start << endl;
cout << "promise_reject " << rtime_ms() - start << endl;
// /**
// * Nested asynchronous invocation
// */
/**
* Nested asynchronous invocation
*/
// atask( [] {
// cout << "idemo ..." << endl;
// atask( [] {
// cout << "ugdnježdena async funkcija " << endl;
// });
// });
atask( [] {
cout << "idemo ..." << endl;
atask( [] {
cout << "ugdnježdena async funkcija " << endl;
});
});
// // // --------------- EVENTS -------------------
// // --------------- EVENTS -------------------
// /**
// * initialization of typed events
// */
/**
* initialization of typed events
*/
// event<int, int> ev2int;
// event<int, string> evintString;
// event<> evoid;
event<int, int> ev2int;
event<int, string> evintString;
event<> evoid;
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum " << a+b << endl;
// });
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
});
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum done" << endl;
// });
ev2int.on("sum", [](int a, int b) {
cout << "Sum done" << endl;
});
// evintString.on("substract", [](int a, string b) {
// cout << "Substract " << a-stoi(b) << endl;
// });
evintString.on("substract", [](int a, string b) {
cout << "Substract " << a-stoi(b) << endl;
});
// evoid.on("void", []() {
// cout << "Void emited" << endl;
// });
evoid.on("void", []() {
cout << "Void emited" << endl;
});
// string emited2 = "2";
string emited2 = "2";
// evoid.on("void", [&]() {
// cout << "Void emited " << emited2 << endl;
// });
evoid.on("void", [&]() {
cout << "Void emited " << emited2 << endl;
});
// evoid.emit("void");
// sleep(1);
evoid.emit("void");
sleep(1);
// /**
// * Emit
// */
/**
* Emit
*/
// ev2int.emit("sum", 5, 8);
ev2int.emit("sum", 5, 8);
// sleep(1);
// evintString.emit("substract", 3, to_string(2));
sleep(1);
evintString.emit("substract", 3, to_string(2));
// sleep(1);
// evoid.off("void");
// evoid.emit("void");
sleep(1);
evoid.off("void");
evoid.emit("void");
// /**
// * Own class
// */
/**
* Own class
*/
// myOwnClass myclass;
myOwnClass myclass;
// timeout t( [&] {
// myclass.emit("constructed", 1);
// }, 200);
timeout t( [&] {
myclass.emit("constructed", 1);
}, 200);
// myclass.on("constructed", [] (int i) {
// cout << "Constructed " << i << endl;
// });
myclass.on("constructed", [] (int i) {
cout << "Constructed " << i << endl;
});
// auto status = fs::read("test1.txt");
auto status = fs::read("test1.txt");
// try {
// auto data = wait(status);
// cout << data;
// } catch (exception& err) {
// cout << err.what() << endl;
// }
try {
auto data = wait(status);
cout << data;
} catch (exception& err) {
cout << err.what() << endl;
}
// string data_;
// auto start_read = rtime_us();
string data_;
auto start_read = rtime_us();
// fs::read("test1.txt", [&data_, &start_read] (string data, exception* error) {
// if (error) {
// cout << "Error " << error->what() << endl;
// } else {
// // cout << "Data " << endl << data << endl;
// // data_ = data;
// // cout << "Data_" << data_ << endl;
// cout << "read " << rtime_us() - start_read << endl;
// }
// });
fs::read("test1.txt", [&data_, &start_read] (string data, exception* error) {
if (error) {
cout << "Error " << error->what() << endl;
} else {
// cout << "Data " << endl << data << endl;
// data_ = data;
// cout << "Data_" << data_ << endl;
cout << "read " << rtime_us() - start_read << endl;
}
});
// ----------------------------------------------------------------------------------------------------

Loading…
Cancel
Save