Compare commits

..

12 Commits

25 changed files with 1213 additions and 1126 deletions

View File

@ -3,7 +3,7 @@ cmake_minimum_required(VERSION 3.10)
project(Asynco) project(Asynco)
# Postavi verziju projekta # Postavi verziju projekta
set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Pronađi Boost biblioteku (ako nije uobičajeni direktorijum, postavi put) # Pronađi Boost biblioteku (ako nije uobičajeni direktorijum, postavi put)
@ -14,7 +14,8 @@ include_directories(lib)
# Dodaj biblioteku # Dodaj biblioteku
add_library(asynco STATIC add_library(asynco STATIC
src/engine.cpp src/asynco.cpp
src/asynco_default.cpp
src/timers.cpp src/timers.cpp
) )
@ -24,6 +25,9 @@ target_link_libraries(asynco Boost::system)
# Dodaj testove # Dodaj testove
add_subdirectory(test) add_subdirectory(test)
add_compile_options(-w)
# Instaliraj biblioteku # Instaliraj biblioteku
# install(TARGETS asynco DESTINATION lib) # install(TARGETS asynco DESTINATION lib)

313
README.md
View File

@ -1,59 +1,89 @@
# Asynco # Asynco
A C++ library for event-driven asynchronous multi-threaded programming. A C++ library for event-driven asynchronous multi-threaded programming that serves as a runtime for asynchronous operations. It acts as a wrapper around the Boost.Asio library, providing a cleaner way to write asynchronous, concurrent, and parallel code utilizing a set of threads and an event loops. It offers features for event-driven programming, timers, and coroutine support.
## Motivation ## Motivation
The original concept was to create an interface capable of asynchronously calling any function. It has since evolved into a library that incorporates a thread pool, each with its own event loop, event-driven programming, and functions inherently designed for asynchronous operation (including periodic and delayed functions). The initial goal was to create an interface that makes it easy and clean to asynchronously invoke any function in C++ without resorting to complex calls. Initially, the library was built around a custom implementation of a scheduling loop for queuing functions. However, this part was later replaced with Boost.Asio, mainly for its timer functionality. As the library evolved, it expanded to include a thread pool, each with its own event loop, and adopted event-driven programming. This enhancement also introduced functions specifically designed for asynchronous operations, including periodic and delayed execution.
The asynchronous filesystem is provided solely to guide users on how to wrap any time- or IO-intensive function for asynchronous execution. The asynchronous filesystem was included solely to demonstrate how users can wrap any time- or I/O-intensive functions for asynchronous execution.
## Features ## Features
- Object oriented - Object oriented
- Small and easy to integrate - Small and easy to integrate
- Header only
- Asynchronous programming - Asynchronous programming
- Multithread - Multithread
- Asynchronous timer functions: periodic, delayed (like setInterval and setTimeout from JS) - Asynchronous timer functions: Periodic, Delayed (like setInterval and setTimeout from JS)
- Typed events (on, tick, off) (like EventEmitter from JS: on, emit, etc) - Typed events (on, tick, off) (like EventEmitter from JS: on, emit, etc)
- Event loops - Event loops
- Multiple parallel execution loops - Multiple parallel execution loops
- Asynchronous file IO
- Based on ASIO (Boost Asio) - Based on ASIO (Boost Asio)
- On C++20 support Boost.Asio coroutines
## Installation ## Installation
Just download the latest release and unzip it into your project. Just download the latest release and unzip it into your project.
```c++ ```c++
#define NUM_OF_RUNNERS 8 // To change the number of threads used by asynco, without this it runs according to the number of cores // for default global runtime
#include "asynco/lib/asynco_default.hpp"
#include "asynco/lib/asynco.hpp" // async_ (), await_()
#include "asynco/lib/triggers.hpp" // trigger (event emitter)
#include "asynco/lib/timers.hpp" // periodic, delayed (like setInterval and setTimeout from JS)
#include "asynco/lib/filesystem.hpp" // for async read and write files
using namespace marcelb; using namespace marcelb;
using namespace asynco; using namespace asynco;
using namespace triggers;
// At the end of the main function, always set int main() {
_asynco_engine.run(); asynco_default_run();
return 0;
// code
asynco_default_join()
return 0;
}
// own instace of runtime
#include "asynco/lib/asynco.hpp"
using namespace marcelb;
using namespace asynco;
int main() {
Asynco asynco;
asynco.run(2);
// code
asynco.join();
return 0;
}
``` ```
## Usage ## Usage
Time asynchronous functions In the following sections, we will explore timers, function execution via the runtime, asynchronous invocation, and waiting for results. We will cover essential use cases involving triggers, and coroutines.
### Timers
We have one timer classes, int two mode Periodic (which runs a callback function periodically), and Delayed (delayed runs a callback function only once).
```c++ ```c++
// start periodic // start periodic
periodic inter1 ([]() { Timer inter1 = periodic ([]() {
cout << "Interval 1" << endl; cout << "Interval 1" << endl;
}, 1000); }, 1000);
// or usint own instance runtime
/**
* Asynco asynco;
* asynco.run(2);
* Timer inter1 = asynco.periodic ([]() {
* cout << "Interval 1" << endl;
* }, 1000);
*/
// stop periodic // stop periodic
inter1.stop(); inter1.stop();
@ -64,7 +94,7 @@ int t = inter1.ticks();
bool stoped = inter1.stoped(); bool stoped = inter1.stoped();
// start delayed // start delayed
delayed time1 ( [] () { Timer time1 = delayed( [] () {
cout << "Timeout 1 " << endl; cout << "Timeout 1 " << endl;
}, 10000); }, 10000);
@ -77,30 +107,10 @@ int t = time1.expired();
// is it stopped // is it stopped
bool stoped = time1.stoped(); bool stoped = time1.stoped();
// If you don't want to save in a variable, but you want to start a timer, use these functions
// And you can also save them, they are only of the shared pointer type
auto d = Delayed( [](){
cout << "Delayed" << endl;
}, 2000);
auto p = Periodic( [](){
cout << "Periodic" << endl;
}, 700);
Periodic( [&] (){
cout << "Delayed expire " << d->expired() << endl;
cout << "Periodic ticks " << p->ticks() << endl;
cout << "Delayed stoped " << d->stoped() << endl;
cout << "Periodic stoped " << p->stoped() << endl;
}, 1000);
Delayed( [&](){
p->stop();
}, 10000);
``` ```
Make functions asynchronous ### Make functions asynchronous
Running functions at runtime, asynchronous execution, uses the `async_` call and its return type is `std::future<T>`
```c++ ```c++
/** /**
@ -108,7 +118,7 @@ Make functions asynchronous
*/ */
async_ ( []() { async_ ( []() {
sleep_for(2s); // only for simulating long duration function sleep(2); // only for simulating long duration function
cout << "nonsync " << endl; cout << "nonsync " << endl;
return 5; return 5;
}); });
@ -139,15 +149,14 @@ clm classes;
async_ ( [&classes] () { async_ ( [&classes] () {
classes.classMethode(); classes.classMethode();
}); });
```
To wait for the result (blocking the flow) use `await_` (This does not block the event loop in principle. If the result is not ready for a short time, it starts another job in place while it waits.)
```c++
/**
* await_ after runned as async
*/
auto a = async_ ( []() { auto a = async_ ( []() {
sleep_for(2s); // only for simulating long duration function sleep(2); // only for simulating long duration function
cout << "nonsync " << endl; cout << "nonsync " << endl;
return 5; return 5;
}); });
@ -159,115 +168,36 @@ cout << await_(a) << endl;
*/ */
cout << await_(async_ ( [] () { cout << await_(async_ ( [] () {
sleep_for(chrono::seconds(1)); // only for simulating long duration function sleep(1); // only for simulating long duration function
cout << "await_ end" << endl; cout << "await_ end" << endl;
return 4; return 4;
})) << endl; })) << endl;
/**
* Await all
**/
auto a = async_ ( []() {
cout << "A" << endl;
return 3;
});
auto b = async_ ( []() {
cout << "B" << endl;
throw runtime_error("Test exception");
return;
});
auto c = async_ ( []() {
cout << "C" << endl;
return "Hello";
});
int a_;
string c_;
auto await_all = [&] () {
a_ = await_(a);
await_(b);
c_ = await_(c);
};
try {
await_all();
cout << "a_ " << a_ << " c_ " << c_ << endl;
} catch (const exception& exc) {
cout << exc.what() << endl;
}
// // same type
vector<future<void>> fut_vec;
for (int i=0; i<5; i++) {
fut_vec.push_back(
async_ ( [i]() {
cout << "Async_ " << i << endl;
})
);
}
auto await_all = [&] () {
for (int i=0; i<fut_vec.size(); i++) {
await_ (fut_vec[i]);
}
};
/**
* Sleep with delayed sleep implement
*/
void sleep_to (int _time) {
promise<void> _promise;
delayed t( [&]() {
_promise.set_value();
}, _time);
return _promise.get_future().get();
}
sleep_to(3000);
/**
* Catch promise reject
*/
void promise_reject (int _time) {
promise<void> _promise;
delayed t( [&]() {
try {
// simulate except
throw runtime_error("Error simulation");
_promise.set_value();
} catch (...) {
_promise.set_exception(current_exception());
}
}, _time);
return _promise.get_future().get();
}
try {
promise_reject(3000);
} catch (runtime_error err) {
cout<< err.what() << endl;
}
``` ```
Events
If you want to run asynchronously but need the result immediately, you can use a shorter notation
```c++
await_ ([]() {
cout << "Hello" << endl;
});
```
Here too you can use your own runtime instance, only the methods are `.async()` and `.await()`
### Triggers
The library implements Triggers, which are basically typed Events.
```c++ ```c++
/** /**
* initialization of typed events * initialization of typed events
*/ */
trigger<int, int> ev2int; Trigger<int, int> ev2int = trigger<int, int>();
trigger<int, string> evintString; Trigger<int, string> evintString = trigger<int, string>();
trigger<> evoid; Trigger<> evoid = trigger<>();
ev2int.on("sum", [](int a, int b) { ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl; cout << "Sum " << a+b << endl;
@ -312,14 +242,14 @@ evoid.tick("void"); // nothing is happening
Extend own class whit events Extend own class whit events
```c++ ```c++
class myOwnClass : public trigger<int> { class myOwnClass : public Trigger<int> {
public: public:
myOwnClass() : trigger() {}; myOwnClass() : Trigger(asynco_default_runtime()) {};
}; };
myOwnClass myclass; myOwnClass myclass;
delayed t( [&] { Delayed t( [&] {
myclass.tick("constructed", 1); myclass.tick("constructed", 1);
}, 200); }, 200);
@ -334,10 +264,12 @@ Implementing a class with multiple triggers of different types
```c++ ```c++
class ClassWithTriggers { class ClassWithTriggers {
trigger<int> emitter1; Trigger<int> emitter1;
trigger<string> emitter2; Trigger<string> emitter2;
public: public:
ClassWithTriggers(): emitter1(asynco_default_runtime()), emitter2(asynco_default_runtime()) {}
template<typename... T> template<typename... T>
void on(const string& key, function<void(T...)> callback) { void on(const string& key, function<void(T...)> callback) {
if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) { if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) {
@ -377,47 +309,60 @@ mt.tick("string", string("Hello world"));
``` ```
## Coroutine
Asynchronous file IO If `define.hpp` is included, you can initialize coroutines with `boost::asio::awaitable<T>`.
```c++ ```c++
string data_;
fs::read("test.txt", [&data_] (string data, exception* error) { awaitable<int> c2(int a) {
if (error) { co_return a * 2;
cout << "Error " << error->what() << endl;
} else {
cout << "Data " << endl << data << endl;
data_ = data;
cout << "Data_" << data_ << endl;
}
});
fs::write("test1.txt", "Hello world", [] (exception* error) {
if (error) {
cout << "Error " << error->what() << endl;
} else {
cout << "Write successfuly" << endl;
}
});
auto future_data = fs::read("test.txt");
try {
string data = await_(future_data);
} catch (exception& err) {
cout << err.what() << endl;
}
auto future_status = fs::write("test.txt", "Hello world");
try {
await_(future_status);
} catch (exception& err) {
cout << err.what() << endl;
} }
``` ```
To run the coroutine at runtime, simply call:
```c++
async_(c2(4));
```
Or using a lambda expression:
```c++
async_([]() -> awaitable<void> {
std::cout << "Hello" << std::endl;
co_await c2(4);
co_return;
}());
```
To retrieve results from coroutines, you can do so as you would from classical functions by calling `await_`:
```c++
int r = await_(
async_(
c2(10)
));
```
If you need the result immediately, you can use a shorter notation
```c++
auto a = await_ ( c2(3));
cout << a << endl;
await_ ([]() -> awaitable<void> {
cout << "Hello" << endl;
co_return;
}());
```
If you need a result, you can also retrieve it with `await_`.
Here too you can use your own runtime instance, only the methods are `.async()` and `.await()`
## License ## License

View File

@ -1,81 +1,187 @@
#ifndef _ASYNCO_ #ifndef _ASYNCO_
#define _ASYNCO_ #define _ASYNCO_
#include "engine.hpp" #include <vector>
#include <memory>
#include <type_traits>
#include <thread>
#include <future>
#include <functional>
#include <iostream> #include <iostream>
using namespace std; using namespace std;
#include <boost/asio.hpp>
#if __cplusplus >= 202002L
#include <boost/asio/awaitable.hpp>
#include <boost/asio/co_spawn.hpp>
#include <boost/asio/use_awaitable.hpp>
#endif
using namespace boost::asio;
#include "timers.hpp"
#include "trigger.hpp"
namespace marcelb { namespace marcelb {
namespace asynco { namespace asynco {
/** /**
* Run the function asynchronously * Asynco runtime
* Used for all asynchronous capabilities of this wrapper
* Initializes threads and boost::asio::io_context
*/ */
template<class F, class... Args> class Asynco {
auto async_(F&& f, Args&&... args) -> future<typename result_of<F(Args...)>::type> { vector<thread> _runners;
using return_type = typename result_of<F(Args...)>::type; unique_ptr<io_service::work> _work;
future<return_type> res = _asynco_engine.io_context.post(boost::asio::use_future(bind(forward<F>(f), forward<Args>(args)...)));
return res;
}
/** void init_loops_in_threads(uint8_t threads);
* Block until the asynchronous call completes
*/
template<typename T>
T await_(future<T>& r) {
return r.get();
}
/** public:
* Block until the asynchronous call completes io_context io_ctx;
*/
template<typename T>
T await_(future<T>&& r) {
return move(r).get();
}
/** /**
* Block until the multiple asynchronous call completes * It starts the thread initialization and the Boost::Asio event loop in each of them
* Use only on no-void calls */
*/
template<typename... F> void run(uint8_t threads = thread::hardware_concurrency());
auto await_(F&&... f) -> std::tuple<typename std::decay<decltype(f.get())>::type...> {
return std::make_tuple(move(f).get()...);
}
/** /**
* Block until the multiple asynchronous call completes * Starts Boost::Asio event loop in the current thread
* Use only on no-void calls */
*/
template<typename... F> void run_on_this();
auto await_(F&... f) -> std::tuple<typename std::decay<decltype(f.get())>::type...> {
return std::make_tuple(f.get()...);
}
/** /**
* Block until the asynchronous call completes or time expired * Waits until all threads have finished working
*/ */
template<typename T>
T await_(future<T>& r, uint64_t time) { void join();
if (r.wait_for(chrono::milliseconds(time)) == std::future_status::timeout) {
throw runtime_error("Asynchronous execution timed out"); /**
* Run the function asynchronously in runtime
*/
template<class F, class... Args>
auto async(F&& f, Args&&... args) -> future<invoke_result_t<F, Args...>> {
using return_type = invoke_result_t<F, Args...>;
future<return_type> res = io_ctx.post(boost::asio::use_future(bind(forward<F>(f), forward<Args>(args)...)));
return res;
} }
return r.get();
}
/** #if __cplusplus >= 202002L
* Block until the asynchronous call completes or time expired /**
*/ * Run the coroutine in runtime
template<typename T> */
T await_(future<T>&& r, uint64_t time) { template <typename T>
if (r.wait_for(chrono::milliseconds(time)) == std::future_status::timeout) { future<T> async(boost::asio::awaitable<T> _coroutine) {
throw runtime_error("Asynchronous execution timed out"); promise<T> promise;
auto future = promise.get_future();
co_spawn(io_ctx, [_coroutine = move(_coroutine), promise = move(promise)]() mutable -> boost::asio::awaitable<void> {
try {
if constexpr (!is_void_v<T>) {
T result = co_await move(_coroutine);
promise.set_value(move(result));
} else {
co_await move(_coroutine);
promise.set_value(); // Za void ne postavljamo rezultat
}
} catch (...) {
promise.set_exception(current_exception()); // Postavljamo izuzetak
}
}, boost::asio::detached);
return future;
} }
return move(r).get(); #endif
}
/**
* Wait until the asynchronous call completes
*/
template<typename T>
T await(future<T>& r, uint16_t time_us = 10) {
while (r.wait_for(std::chrono::microseconds(time_us)) != future_status::ready) {
io_ctx.poll_one();
}
return r.get();
}
/**
* Wait until the asynchronous call completes
*/
template<typename T>
T await(future<T>&& r, uint16_t time_us = 10) {
while (r.wait_for(std::chrono::microseconds(time_us)) != future_status::ready) {
io_ctx.poll_one();
}
return move(r).get();
}
/**
* Run the function asynchronously an wait until completes
*/
template<class F, class... Args>
auto await(F&& f, Args&&... args) -> invoke_result_t<F, Args...> {
return await(
async(f, args...)
);
}
#if __cplusplus >= 202002L
/**
* Run the coruotine and wait
*/
template <typename T>
T await(boost::asio::awaitable<T> _coroutine) {
return await(
async(
move(_coroutine)
));
}
#endif
/**
* Wait until the multiple asynchronous call completes
* Use only on no-void calls
*/
template<typename... F>
auto await(F&&... f) -> tuple<typename decay<decltype(await(f))>::type...> {
return make_tuple(await(f)...);
}
/**
* Wait until the multiple asynchronous call completes
* Use only on no-void calls
*/
template<typename... F>
auto await(F&... f) -> tuple<typename decay<decltype(await(f))>::type...> {
return make_tuple(await(f)...);
}
/**
* Initialize the delayed timer
*/
Timer delayed(function<void()> callback, uint64_t time);
/**
* Initialize the periodic timer
*/
Timer periodic(function<void()> callback, uint64_t time);
/**
* Initialize trigger (typed event)
*/
template<typename... T>
Trigger<T...> trigger() {
return Trigger<T...>(*this);
}
};
} }
} }

155
lib/asynco_default.hpp Normal file
View File

@ -0,0 +1,155 @@
#ifndef _ASYNCO_DEFAULT_
#define _ASYNCO_DEFAULT_
#include "asynco.hpp"
namespace marcelb {
namespace asynco {
/**
* Default runtime
*/
extern Asynco Asynco_Default_Runtime;
/**
* Run the function asynchronously in default runtime
*/
template<class F, class... Args>
auto async_(F&& f, Args&&... args) -> future<invoke_result_t<F, Args...>> {
return Asynco_Default_Runtime.async(bind(forward<F>(f), forward<Args>(args)...));
}
#if __cplusplus >= 202002L
/**
* Run the coroutine in default runtime
*/
template <typename T>
std::future<T> async_(boost::asio::awaitable<T> _coroutine) {
return Asynco_Default_Runtime.async(move(_coroutine));
}
#endif
/**
* Wait until the asynchronous call completes
*/
template<typename T>
T await_(future<T>& r, uint16_t time_us = 10) {
return Asynco_Default_Runtime.await(r, time_us);
}
/**
* Wait until the asynchronous call completes
*/
template<typename T>
T await_(future<T>&& r, uint16_t time_us = 10) {
return Asynco_Default_Runtime.await(r, time_us);
}
/**
* Run the function asynchronously an wait until completes
*/
template<class F, class... Args>
auto await_(F&& f, Args&&... args) -> invoke_result_t<F, Args...> {
return Asynco_Default_Runtime.await(bind(forward<F>(f), forward<Args>(args)...));
}
#if __cplusplus >= 202002L
/**
* Run the coruotine and wait
*/
template <typename T>
T await_(boost::asio::awaitable<T> _coroutine) {
return Asynco_Default_Runtime.await(move(_coroutine));
}
#endif
/**
* Wait until the multiple asynchronous call completes
* Use only on no-void calls
*/
template<typename... F>
auto await_(F&&... f) -> std::tuple<typename std::decay<decltype(Asynco_Default_Runtime.await(f))>::type...> {
return Asynco_Default_Runtime.await(move(f)...);
}
/**
* Wait until the multiple asynchronous call completes
* Use only on no-void calls
*/
template<typename... F>
auto await_(F&... f) -> std::tuple<typename std::decay<decltype(Asynco_Default_Runtime.await(f))>::type...> {
return Asynco_Default_Runtime.await(f...);;
}
/**
* Initialize the delayed timer
*/
Timer delayed(function<void()> callback, uint64_t time);
/**
* Initialize the periodic timer
*/
Timer periodic(function<void()> callback, uint64_t time);
/**
* Initialize trigger (typed event)
*/
template<typename... T>
Trigger<T...> trigger() {
return Trigger<T...>(Asynco_Default_Runtime);
}
/**
* Get reference of default runtime
*/
Asynco& asynco_default_runtime();
/**
* Run default runtime
*/
void asynco_default_run();
/**
* Run default runtime in this thread
*/
void asynco_default_run_on_this();
/**
* Waits until all threads have finished working
*/
void asynco_default_join();
/**
* Get reference of boost::asio::io_context
*/
io_context& asynco_default_io_context();
/**
* Run the function asynchronously in default runtime
*/
#define async_ marcelb::asynco::async_
/**
* Wait until the asynchronous call completes
*/
#define await_ marcelb::asynco::await_
}
}
#endif

View File

@ -1,19 +0,0 @@
#ifndef _ASYNCO_DEFINE_
#define _ASYNCO_DEFINE_
namespace marcelb {
namespace asynco {
/**
* Alternative names of functions - mostly for the sake of more beautiful coloring of the code
*/
#define async_ marcelb::asynco::async_
#define await_ marcelb::asynco::await_
}
}
#endif

View File

@ -1,71 +0,0 @@
#ifndef _ASYNCO_ENGINE_
#define _ASYNCO_ENGINE_
#include <vector>
#include <memory>
using namespace std;
#include <boost/asio.hpp>
namespace marcelb {
namespace asynco {
#define HW_CONCURRENCY_MINIMAL 4
/**
* Internal anonymous class for initializing the ASIO context and thread pool
* !!! It is anonymous to protect against use in the initialization of other objects of the same type !!!
*/
class Engine {
public:
boost::asio::io_context io_context;
void run() {
for (auto& runner : runners) {
runner.join();
}
}
private:
unique_ptr<boost::asio::io_service::work> work { [&] () {
return new boost::asio::io_service::work(io_context);
} ()};
vector<thread> runners { [&] () {
vector<thread> _runs;
unsigned int num_of_runners;
#ifdef NUM_OF_RUNNERS
num_of_runners = NUM_OF_RUNNERS;
#else
num_of_runners = thread::hardware_concurrency();
if (num_of_runners < HW_CONCURRENCY_MINIMAL) {
num_of_runners = HW_CONCURRENCY_MINIMAL;
}
#endif
for (int i=0; i<num_of_runners; i++) {
_runs.push_back(thread ( [this] () {
io_context.run();
}));
}
return _runs;
} ()};
};
extern Engine _asynco_engine;
}
}
#endif

View File

@ -1,115 +0,0 @@
#ifndef _ASYNCO_FS_
#define _ASYNCO_FS_
#include "asynco.hpp"
using namespace marcelb;
using namespace asynco;
#include <fstream>
using namespace std;
namespace marcelb {
namespace asynco {
namespace fs {
/**
* Asynchronous file reading with callback after read complete
*/
template<typename Callback>
void read(string path, Callback&& callback) {
asynco::async_( [&path, callback] () {
string content;
try {
string line;
ifstream file (path);
if (file.is_open()) {
line.clear();
while ( getline (file,line) ) {
content += line + "\n";
}
file.close();
}
else {
throw runtime_error("Unable to open file");
}
callback(content, nullptr);
} catch(exception& error) {
callback(content, &error);
}
});
}
/**
* Asynchronous file reading
*/
future<string> read(string path) {
return asynco::async_( [&path] () {
string content;
string line;
ifstream file (path);
if (file.is_open()) {
line.clear();
while ( getline (file,line) ) {
content += line + "\n";
}
file.close();
return content;
}
else {
throw runtime_error("Unable to open file");
}
});
}
/**
* Asynchronous file writing with callback after write complete
*/
template<typename Callback>
void write(string path, string content, Callback&& callback) {
asynco::async_( [&path, &content, callback] () {
try {
ofstream file (path);
if (file.is_open()) {
file << content;
file.close();
}
else {
throw runtime_error("Unable to open file");
}
callback(nullptr);
} catch(exception& error) {
callback(&error);
}
});
}
/**
* Asynchronous file writing with callback after write complete
*/
future<void> write(string path, string content) {
return asynco::async_( [&path, &content] () {
ofstream file (path);
if (file.is_open()) {
file << content;
file.close();
return;
}
else {
throw runtime_error("Unable to open file");
}
});
}
}
}
}
#endif

View File

@ -2,9 +2,11 @@
#define _ASYNCO_TIMERS_ #define _ASYNCO_TIMERS_
#include <chrono> #include <chrono>
#include <iostream>
using namespace std; using namespace std;
#include "asynco.hpp" #include <boost/asio.hpp>
using namespace boost::asio;
namespace marcelb { namespace marcelb {
namespace asynco { namespace asynco {
@ -21,13 +23,19 @@ int64_t rtime_ms();
int64_t rtime_us(); int64_t rtime_us();
enum TimerType {
Delayed,
Periodic
};
/** /**
* Core timer class for construct time async functions * Core timer class for construct time async functions
*/ */
class timer { class Timer {
boost::asio::steady_timer st; io_context& io_ctx;
steady_timer st;
bool _stop = false; bool _stop = false;
bool repeate; TimerType type;
function<void()> callback; function<void()> callback;
uint64_t time; uint64_t time;
uint64_t _ticks = 0; uint64_t _ticks = 0;
@ -36,13 +44,12 @@ class timer {
* A method to assign a callback wrapper and a reinitialization algorithm * A method to assign a callback wrapper and a reinitialization algorithm
*/ */
void init(); void init();
public: public:
/** /**
* The constructor creates the steady_timer and accompanying variables and runs a method to initialize the timer * The constructor creates the steady_timer and accompanying variables and runs a method to initialize the timer
*/ */
timer (function<void()> _callback, uint64_t _time, bool _repeate); Timer (io_context& io_ctx, function<void()> _callback, uint64_t _time, TimerType _type = TimerType::Delayed);
/** /**
* Stop timer * Stop timer
@ -61,99 +68,22 @@ class timer {
*/ */
uint64_t ticks(); uint64_t ticks();
/**
* The logic status of the timer stop state
*/
bool stoped();
/**
* The destructor stops the timer
*/
~timer();
};
/**
* Class periodic for periodic execution of the callback in time in ms
*/
class periodic {
shared_ptr<timer> _timer;
public:
/**
* Constructor initializes a shared pointer of type timer
*/
periodic(function<void()> callback, uint64_t time);
/**
* Stop periodic
* The stop flag is set and periodic remove it from the queue
*/
void stop();
/**
* Run callback now
* Forces the callback function to run independently of the periodic
*/
void now();
/**
* Get the number of times the periodic callback was runned
*/
uint64_t ticks();
/**
* The logic status of the periodic stop state
*/
bool stoped();
/**
* The destructor stops the periodic
*/
~periodic();
};
/**
* Class delayed for delayed callback execution in ms
*/
class delayed {
shared_ptr<timer> _timer;
public:
/**
* Constructor initializes a shared pointer of type timer
*/
delayed(function<void()> callback, uint64_t time);
/**
* Stop delayed
* The stop flag is set and delayed remove it from the queue
*/
void stop();
/**
* Run callback now
* Forces the callback function to run independently of the delayed
*/
void now();
/** /**
* Get is the delayed callback runned * Get is the delayed callback runned
*/ */
bool expired(); bool expired();
/** /**
* The logic status of the delayed stop state * The logic status of the timer stop state
*/ */
bool stoped(); bool stoped();
/** /**
* The destructor stops the delayed * The destructor stops the timer
*/ */
~delayed(); ~Timer();
}; };
shared_ptr<periodic> Periodic(function<void()> callback, uint64_t time);
shared_ptr<delayed> Delayed(function<void()> callback, uint64_t time);
} }
} }

View File

@ -8,22 +8,26 @@
using namespace std; using namespace std;
#include "engine.hpp" #include "asynco.hpp"
namespace marcelb { namespace marcelb {
namespace asynco { namespace asynco {
namespace triggers {
class Asynco;
/** /**
* trigger class, for event-driven programming. * Trigger class, for event-driven programming.
* These events are typed according to the arguments of the callback function * These events are typed according to the arguments of the callback function
*/ */
template<typename... T> template<typename... T>
class trigger { class Trigger {
private: private:
Asynco& engine;
mutex m_eve; mutex m_eve;
unordered_map<string, vector<function<void(T...)>>> triggers; unordered_map<string, vector<function<void(T...)>>> triggers;
public: public:
Trigger(Asynco& _engine)
: engine(_engine) {}
/** /**
* Defines event by key, and callback function * Defines event by key, and callback function
@ -33,6 +37,7 @@ class trigger {
triggers[key].push_back(callback); triggers[key].push_back(callback);
} }
/** /**
* It emits an event and sends a callback function saved according to the key with the passed parameters * It emits an event and sends a callback function saved according to the key with the passed parameters
*/ */
@ -42,30 +47,29 @@ class trigger {
if (it_eve != triggers.end()) { if (it_eve != triggers.end()) {
for (uint i =0; i<it_eve->second.size(); i++) { for (uint i =0; i<it_eve->second.size(); i++) {
auto callback = bind(it_eve->second[i], forward<Args>(args)...); auto callback = bind(it_eve->second[i], forward<Args>(args)...);
asynco::async_(callback); engine.async(callback);
} }
} }
} }
/** /**
* Remove an trigger listener from an event * Remove an Trigger listener from an event
*/ */
void off(const string& key) { void off(const string& key) {
lock_guard _off(m_eve); lock_guard _off(m_eve);
triggers.erase(key); triggers.erase(key);
} }
/** /**
* Remove all trigger listener * Remove all Trigger listener
*/ */
void off() { void off() {
lock_guard _off(m_eve); lock_guard _off(m_eve);
triggers.clear(); triggers.clear();
} }
/** /**
* Get num of listeners by an trigger key * Get num of listeners by an Trigger key
*/ */
unsigned int listeners(const string& key) { unsigned int listeners(const string& key) {
return triggers[key].size(); return triggers[key].size();
@ -85,7 +89,6 @@ class trigger {
}; };
}
} }
} }

41
src/asynco.cpp Normal file
View File

@ -0,0 +1,41 @@
#include "../lib/asynco.hpp"
namespace marcelb::asynco {
void Asynco::init_loops_in_threads(uint8_t threads) {
for (int i=0; i<threads; i++) {
_runners.push_back(thread ( [this] () {
io_ctx.run();
}));
}
}
void Asynco::run(uint8_t threads) {
_work = make_unique<io_service::work>(io_ctx);
init_loops_in_threads(threads);
}
void Asynco::run_on_this() {
if (!_work) {
_work = make_unique<io_service::work>(io_ctx);
}
io_ctx.run();
}
void Asynco::join() {
for (auto& runner : _runners) {
runner.join();
}
}
Timer Asynco::delayed(function<void()> callback, uint64_t time) {
return Timer(io_ctx, callback, time, TimerType::Delayed);
}
Timer Asynco::periodic(function<void()> callback, uint64_t time) {
return Timer(io_ctx, callback, time, TimerType::Periodic);
}
};

36
src/asynco_default.cpp Normal file
View File

@ -0,0 +1,36 @@
#include "../lib/asynco_default.hpp"
namespace marcelb::asynco {
Asynco Asynco_Default_Runtime;
Timer delayed(function<void()> callback, uint64_t time) {
return Timer(Asynco_Default_Runtime.io_ctx, callback, time, TimerType::Delayed);
}
Timer periodic(function<void()> callback, uint64_t time) {
return Timer(Asynco_Default_Runtime.io_ctx, callback, time, TimerType::Periodic);
}
Asynco& asynco_default_runtime() {
return Asynco_Default_Runtime;
}
void asynco_default_run() {
Asynco_Default_Runtime.run();
}
void asynco_default_run_on_this() {
Asynco_Default_Runtime.run_on_this();
}
void asynco_default_join() {
Asynco_Default_Runtime.join();
}
io_context& asynco_default_io_context() {
return Asynco_Default_Runtime.io_ctx;
}
};

View File

@ -1,7 +0,0 @@
#include "../lib/engine.hpp"
namespace marcelb::asynco {
Engine _asynco_engine;
};

View File

@ -3,23 +3,23 @@
namespace marcelb::asynco { namespace marcelb::asynco {
int64_t rtime_ms() { int64_t rtime_ms() {
return chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now() return std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now()
.time_since_epoch()) .time_since_epoch())
.count(); .count();
} }
int64_t rtime_us() { int64_t rtime_us() {
return chrono::duration_cast<chrono::microseconds>(chrono::system_clock::now() return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now()
.time_since_epoch()) .time_since_epoch())
.count(); .count();
} }
void timer::init() { void Timer::init() {
st.async_wait( [this] (const boost::system::error_code&) { st.async_wait( [this] (const boost::system::error_code&) {
if (!_stop) { if (!_stop) {
callback(); callback();
if (repeate) { if (type == TimerType::Periodic) {
st = boost::asio::steady_timer(_asynco_engine.io_context, boost::asio::chrono::milliseconds(time)); st = steady_timer(io_ctx, boost::asio::chrono::milliseconds(time));
init(); init();
} }
_ticks++; _ticks++;
@ -27,119 +27,39 @@ void timer::init() {
}); });
} }
timer::timer (function<void()> _callback, uint64_t _time, bool _repeate) : Timer::Timer (io_context& _io_ctx, function<void()> _callback, uint64_t _time, TimerType _type):
st(_asynco_engine.io_context, boost::asio::chrono::milliseconds(_time)), io_ctx(_io_ctx),
st(io_ctx, boost::asio::chrono::milliseconds(_time)),
_stop(false), _stop(false),
repeate(_repeate), type(_type),
callback(_callback), callback(_callback),
time(_time) { time(_time) {
init(); init();
} }
void timer::stop() { void Timer::stop() {
_stop = true; _stop = true;
st.cancel(); st.cancel();
} }
void timer::now() { void Timer::now() {
st.cancel(); st.cancel();
} }
uint64_t timer::ticks() { uint64_t Timer::ticks() {
return _ticks; return _ticks;
} }
bool timer::stoped() { bool Timer::expired() {
return bool(_ticks);
}
bool Timer::stoped() {
return _stop; return _stop;
} }
timer::~timer() { Timer::~Timer() {
stop(); stop();
} }
periodic::periodic(function<void()> callback, uint64_t time) :
_timer(make_shared<timer> (callback, time, true)) {
}
void periodic::stop() {
_timer->stop();
}
void periodic::now() {
_timer->now();
}
uint64_t periodic::ticks() {
return _timer->ticks();
}
bool periodic::stoped() {
return _timer->stoped();
}
periodic::~periodic() {
stop();
}
delayed::delayed(function<void()> callback, uint64_t time) :
_timer(make_shared<timer> (callback, time, false)) {
}
void delayed::stop() {
_timer->stop();
}
void delayed::now() {
_timer->now();
}
bool delayed::expired() {
return bool(_timer->ticks());
}
bool delayed::stoped() {
return _timer->stoped();
}
delayed::~delayed() {
stop();
}
mutex p_io, d_io;
vector<shared_ptr<periodic>> periodic_calls_container;
vector<shared_ptr<delayed>> delayed_calls_container;
shared_ptr<periodic> Periodic(function<void()> callback, uint64_t time) {
shared_ptr<periodic> periodic_ptr(make_shared<periodic>(callback, time));
async_ ( [&, periodic_ptr](){
lock_guard<mutex> lock(p_io);
periodic_calls_container.push_back(periodic_ptr);
for (uint32_t i=0; i<periodic_calls_container.size(); i++) {
if (periodic_calls_container[i]->stoped()) {
periodic_calls_container.erase(periodic_calls_container.begin()+i);
i--;
}
}
});
return periodic_ptr;
}
shared_ptr<delayed> Delayed(function<void()> callback, uint64_t time) {
shared_ptr<delayed> delayed_ptr(make_shared<delayed>(callback, time));
async_ ( [&, delayed_ptr](){
lock_guard<mutex> lock(p_io);
delayed_calls_container.push_back(delayed_ptr);
for (uint32_t i=0; i<delayed_calls_container.size(); i++) {
if (delayed_calls_container[i]->stoped() || delayed_calls_container[i]->expired()) {
delayed_calls_container.erase(delayed_calls_container.begin()+i);
i--;
}
}
});
return delayed_ptr;
}
}; };

View File

@ -1,4 +1,29 @@
add_executable(asynco_test main.cpp) add_executable(asynco_default main_default.cpp)
target_link_libraries(asynco_default asynco Boost::system)
# Linkaj test sa Asynco bibliotekom add_executable(asynco_init main_init.cpp)
target_link_libraries(asynco_test asynco Boost::system) target_link_libraries(asynco_init asynco Boost::system)
add_executable(asynco_async_default main_async_default.cpp)
target_link_libraries(asynco_async_default asynco Boost::system)
add_executable(asynco_async main_async.cpp)
target_link_libraries(asynco_async asynco Boost::system)
add_executable(asynco_timers_default main_timers_default.cpp)
target_link_libraries(asynco_timers_default asynco Boost::system)
add_executable(asynco_timers main_timers.cpp)
target_link_libraries(asynco_timers asynco Boost::system)
add_executable(asynco_trigger_default main_trigger_default.cpp)
target_link_libraries(asynco_trigger_default asynco Boost::system)
add_executable(asynco_trigger main_trigger.cpp)
target_link_libraries(asynco_trigger asynco Boost::system)
add_executable(asynco_coroutine_default main_coroutine_default.cpp)
target_link_libraries(asynco_coroutine_default asynco Boost::system)
add_executable(asynco_coroutine main_coroutine.cpp)
target_link_libraries(asynco_coroutine asynco Boost::system)

View File

@ -1,469 +0,0 @@
#define NUM_OF_RUNNERS 4
#include "asynco.hpp"
#include "trigger.hpp"
#include "filesystem.hpp"
#include "timers.hpp"
#include "define.hpp"
using namespace marcelb::asynco;
using namespace triggers;
#include <iostream>
#include <unistd.h>
#include <thread>
#include <future>
#include <vector>
using namespace std;
using namespace this_thread;
void sleep_to (int _time) {
promise<void> _promise;
delayed t( [&]() {
_promise.set_value();
}, _time);
return _promise.get_future().get();
}
void promise_reject (int _time) {
promise<void> _promise;
delayed t( [&]() {
try {
// simulate except
throw runtime_error("Error simulation");
_promise.set_value();
} catch (...) {
_promise.set_exception(current_exception());
}
}, _time);
return _promise.get_future().get();
}
void notLambdaFunction() {
cout << "Call to not lambda function" << endl;
}
class clm {
public:
void classMethode() {
cout << "Call class method" << endl;
}
};
// ------------------ EXTEND OWN CLASS WITH EVENTS -------------------
class myOwnClass : public trigger<int> {
public:
myOwnClass() : trigger() {};
};
// ----------------- MULTIPLE TRIGGERS IN ONE CLASS ------------------
class ClassWithTriggers {
trigger<int> emitter1;
trigger<string> emitter2;
public:
template<typename... T>
void on(const string& key, function<void(T...)> callback) {
if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) {
emitter1.on(key, callback);
}
else if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, string>) {
emitter2.on(key, callback);
}
}
template <typename... Args>
void tick(const string& key, Args&&... args) {
if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, int>) {
emitter1.tick(key, forward<Args>(args)...);
}
else if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, string>) {
emitter2.tick(key, forward<Args>(args)...);
}
else {
static_assert(sizeof...(Args) == 0, "Unsupported number or types of arguments");
}
}
};
int main () {
auto start = rtime_ms();
// --------------- TIME ASYNCHRONOUS FUNCTIONS --------------
/**
* Init periodic and delayed; clear periodic and delayed
*/
// periodic inter1 ([&]() {
// cout << "periodic prvi " << rtime_ms() - start << endl;
// }, 1000);
// periodic inter2 ([&]() {
// cout << "periodic drugi " << rtime_ms() - start << endl;
// }, 2000);
// periodic inter3 ([&]() {
// cout << "periodic treći " << rtime_ms() - start << endl;
// }, 1000);
// periodic inter4 ([&]() {
// // cout << "periodic cetvrti " << rtime_ms() - start << endl;
// cout << "Ticks " << inter3.ticks() << endl;
// }, 500);
// periodic inter5 ([&]() {
// cout << "periodic peti " << rtime_ms() - start << endl;
// }, 2000);
// periodic inter6 ([&]() {
// cout << "periodic sesti " << rtime_ms() - start << endl;
// }, 3000);
// delayed time1 ( [&] () {
// cout << "Close periodic 1 i 2 " << rtime_ms() - start << endl;
// inter1.stop();
// cout << "inter1.stop " << endl;
// inter2.stop();
// cout << "inter2.stop " << endl;
// }, 8000);
// delayed time2 ([&] () {
// cout << "Close periodic 3 " << rtime_ms() - start << endl;
// inter3.stop();
// cout << "Stoped " << inter3.stoped() << endl;
// // time1.stop();
// }, 5000);
// if (time2.expired()) {
// cout << "isteko " << endl;
// } else {
// cout << "nije isteko " << endl;
// }
// // sleep(6);
// if (time2.expired()) {
// cout << "isteko " << endl;
// } else {
// cout << "nije isteko " << endl;
// }
// auto d = Delayed( [](){
// cout << "Delayed" << endl;
// }, 2000);
// auto p = Periodic( [](){
// cout << "Periodic" << endl;
// }, 700);
// Periodic( [&] (){
// cout << "Delayed expire " << d->expired() << endl;
// cout << "Periodic ticks " << p->ticks() << endl;
// cout << "Delayed stoped " << d->stoped() << endl;
// cout << "Periodic stoped " << p->stoped() << endl;
// }, 1000);
// Delayed( [&](){
// p->stop();
// }, 10000);
// // // // ------------------------ MAKE FUNCTIONS ASYNCHRONOUS -------------------------
// // /**
// // * Run an function asyncronic
// // */
// async_ ( []() {
// sleep_for(2s); // only for simulate log duration function
// cout << "asynco 1" << endl;
// return 5;
// });
// /**
// * Call not lambda function
// */
// async_ (notLambdaFunction);
// await_ (
// async_ (
// notLambdaFunction
// )
// );
// // async(launch::async, [] () {
// // cout << "Another thread in async style!" << endl;
// // });
// // /**
// // * Call class method
// // */
// clm classes;
// async_ ( [&classes] () {
// classes.classMethode();
// });
// sleep(5);
// // /**
// // * await_ after runned as async
// // */
// auto aa = async_ ( []() {
// sleep_for(2s); // only for simulate log duration function
// cout << "async_ 2" << endl;
// return 5;
// });
// cout << await_(aa) << endl;
// cout << "print after async_ 2" << endl;
// /**
// * await_ async function call and use i cout
// */
// cout << await_(async_ ( [] () {
// sleep_for(chrono::seconds(1)); // only for simulate log duration function
// cout << "await_ end" << endl;
// return 4;
// })) << endl;
// /**
// * Sleep with delayed sleep implement
// */
// sleep_to(3000);
// cout << "sleep_to " << rtime_ms() - start << endl;
// /**
// * Catch promise reject
// */
// try {
// promise_reject(3000);
// } catch (runtime_error err) {
// cout<< err.what() << endl;
// }
// cout << "promise_reject " << rtime_ms() - start << endl;
// /**
// * Nested asynchronous invocation
// */
// async_ ( [] {
// cout << "idemo ..." << endl;
// async_ ( [] {
// cout << "ugdnježdena async funkcija " << endl;
// });
// });
// // -------------------------- AWAIT ALL ----------------------------------
auto a = async_ ( []() {
cout << "A" << endl;
return 3;
});
auto b = async_ ( []() {
cout << "B" << endl;
// throw runtime_error("Test exception");
return;
});
auto c = async_ ( []() {
cout << "C" << endl;
return "Hello";
});
int a_;
string c_;
// auto all = await_(a, c);
// cout << get<0>(all) << get<1>(all) << endl;
// ili
tie(a_, c_) = await_(a, c);
cout << a_ << c_ << endl;
int d_;
float e_;
tie(d_, e_) = await_( async_ ( []() {return 1;}), async_ ([](){ return 4.3;}));
cout << d_ << e_ << endl;
// auto await_all = [&] () {
// a_ = await_(a);
// await_(b);
// c_ = await_(c);
// };
// try {
// await_all();
// cout << "a_ " << a_ << " c_ " << c_ << endl;
// } catch (const exception& exc) {
// cout << exc.what() << endl;
// }
// // // same type
// vector<future<void>> fut_vec;
// for (int i=0; i<5; i++) {
// fut_vec.push_back(
// async_ ( [i]() {
// cout << "Async_ " << i << endl;
// })
// );
// }
// auto await_all2 = [&] () {
// for (int i=0; i<fut_vec.size(); i++) {
// await_ (fut_vec[i]);
// }
// };
// await_all2();
// // --------------- EVENTS -------------------
// /**
// * initialization of typed events
// */
// trigger<int, int> ev2int;
// trigger<int, string> evintString;
// trigger<> evoid;
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum " << a+b << endl;
// });
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum done" << endl;
// });
// evintString.on("substract", [](int a, string b) {
// cout << "Substract " << a-stoi(b) << endl;
// });
// evoid.on("void", []() {
// cout << "Void emited" << endl;
// });
// string emited2 = "2";
// evoid.on("void", [&]() {
// cout << "Void emited " << emited2 << endl;
// });
// evoid.tick("void");
// sleep(1);
// /**
// * Emit
// */
// ev2int.tick("sum", 5, 8);
// sleep(1);
// evintString.tick("substract", 3, to_string(2));
// sleep(1);
// evoid.off("void");
// evoid.tick("void");
// cout << "Ukupno 2 int " << ev2int.listeners() << endl;
// cout << "Ukupno evintString " << evintString.listeners() << endl;
// cout << "Ukupno evoid " << evoid.listeners() << endl;
// cout << "Ukupno 2 int " << ev2int.listeners("sum") << endl;
// /**
// * Own class
// */
// myOwnClass myclass;
// delayed t( [&] {
// myclass.tick("constructed", 1);
// }, 200);
// myclass.on("constructed", [] (int i) {
// cout << "Constructed " << i << endl;
// });
// /**
// *
// * Use class with multiple triggers
// *
// */
ClassWithTriggers mt;
mt.on<int>("int", function<void(int)>([&](int i) {
cout << "Emit int " << i << endl;
}));
mt.on<string>("string", function<void(string)>([&](string s) {
cout << "Emit string " << s << endl;
}));
mt.tick("int", 5);
mt.tick("string", string("Hello world"));
// auto status = fs::read("test1.txt");
// try {
// auto data = await_(status);
// cout << data;
// } catch (exception& err) {
// cout << err.what() << endl;
// }
// string data_;
// auto start_read = rtime_us();
// fs::read("test1.txt", [&data_, &start_read] (string data, exception* error) {
// if (error) {
// cout << "Error " << error->what() << endl;
// } else {
// // cout << "Data " << endl << data << endl;
// // data_ = data;
// // cout << "Data_" << data_ << endl;
// cout << "read " << rtime_us() - start_read << endl;
// }
// });
// // ----------------------------------------------------------------------------------------------------
cout << "Run" << endl;
_asynco_engine.run();
return 0;
}

84
test/main_async.cpp Normal file
View File

@ -0,0 +1,84 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
Asynco asynco;
void notLambdaFunction() {
cout << "Call to not lambda function" << endl;
}
class clm {
public:
void classMethode() {
cout << "Call class method" << endl;
}
};
void sleep_to (int _time) {
promise<void> _promise;
Timer t = asynco.delayed( [&]() {
_promise.set_value();
}, _time);
return asynco.await(_promise.get_future());
}
int main() {
asynco.run(2);
/**
* Run an lambda function asynchronously
*/
asynco.async ( []() {
cout << "async " << endl;
});
/**
* Run not lambda function
*/
asynco.async (notLambdaFunction);
/**
* Run class method
*/
clm classes;
asynco.async ( [&classes] () {
classes.classMethode();
});
//------------------AWAIT----------------------
auto a = asynco.async ( []() {
sleep_to(1000); //only for simulating long duration function
return 5;
});
cout << asynco.await(a) << endl;
/**
* await async function call and use i cout
*/
cout << asynco.await(asynco.async ( [] () {
sleep_to(1000);
cout << "await_ end" << endl;
return 4;
})) << endl;
asynco.await ([]() { // run in runtime and await now
cout << "Hello" << endl;
});
asynco.join();
return 0;
}

View File

@ -0,0 +1,82 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
void notLambdaFunction() {
cout << "Call to not lambda function" << endl;
}
class clm {
public:
void classMethode() {
cout << "Call class method" << endl;
}
};
void sleep_to (int _time) {
promise<void> _promise;
Timer t = delayed( [&]() {
_promise.set_value();
}, _time);
return await_(_promise.get_future());
}
int main() {
asynco_default_run();
/**
* Run an lambda function asynchronously
*/
async_ ( []() {
cout << "async " << endl;
});
/**
* Run not lambda function
*/
async_ (notLambdaFunction);
/**
* Run class method
*/
clm classes;
async_ ( [&classes] () {
classes.classMethode();
});
//------------------AWAIT----------------------
auto a = async_ ( []() {
sleep_to(1000); //only for simulating long duration function
return 5;
});
cout << await_(a) << endl;
/**
* await async function call and use i cout
*/
cout << await_(async_ ( [] () {
sleep_to(1000);
cout << "await_ end" << endl;
return 4;
})) << endl;
await_ ([]() { // run in runtime and await now
cout << "Hello" << endl;
});
asynco_default_join();
return 0;
}

43
test/main_coroutine.cpp Normal file
View File

@ -0,0 +1,43 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
awaitable<int> c2(int a) {
co_return a * 2;
}
int main() {
Asynco asynco; // or global
asynco.run(2);
asynco.async(c2(4));
asynco.async([]() -> awaitable<void> {
std::cout << "Hello" << std::endl;
co_await c2(4);
co_return;
}());
int r = asynco.await(
asynco.async(
c2(10)
));
auto a = asynco.await( c2(3));
cout << a << endl;
asynco.await([]() -> awaitable<void> {
cout << "Hello" << endl;
co_return;
}());
asynco.join();
return 0;
}

View File

@ -0,0 +1,41 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
awaitable<int> c2(int a) {
co_return a * 2;
}
int main() {
asynco_default_run();
async_(c2(4));
async_([]() -> awaitable<void> {
std::cout << "Hello" << std::endl;
co_await c2(4);
co_return;
}());
int r = await_(
async_(
c2(10)
));
auto a = await_ ( c2(3));
cout << a << endl;
await_ ([]() -> awaitable<void> {
cout << "Hello" << endl;
co_return;
}());
asynco_default_join();
return 0;
}

14
test/main_default.cpp Normal file
View File

@ -0,0 +1,14 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
int main() {
asynco_default_run();
// code
asynco_default_join();
return 0;
}

16
test/main_init.cpp Normal file
View File

@ -0,0 +1,16 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
int main() {
Asynco asynco;
asynco.run(2);
// code
asynco.join();
return 0;
}

41
test/main_timers.cpp Normal file
View File

@ -0,0 +1,41 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
int main() {
Asynco asynco;
asynco.run(2);
Timer inter1 = asynco.periodic ([]() {
cout << "Interval 1" << endl;
}, 1000);
// stop periodic
inter1.stop();
// how many times it has expired
int ti = inter1.ticks();
// is it stopped
bool stoped_i = inter1.stoped();
// start delayed
Timer time1 = asynco.delayed ( [] () {
cout << "Timeout 1 " << endl;
}, 10000);
// stop delayed
time1.stop();
// is it expired
int tt = time1.expired();
// is it stopped
bool stoped_t = time1.stoped();
asynco.join();
return 0;
}

View File

@ -0,0 +1,40 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
int main() {
asynco_default_run();
Timer inter1 = periodic ([]() {
cout << "Interval 1" << endl;
}, 1000);
// stop periodic
// inter1.stop();
// how many times it has expired
int ti = inter1.ticks();
// is it stopped
bool stoped_i = inter1.stoped();
// start delayed
Timer time1 = delayed ( [] () {
cout << "Timeout 1 " << endl;
}, 10000);
// stop delayed
// time1.stop();
// is it expired
int tt = time1.expired();
// is it stopped
bool stoped_t = time1.stoped();
asynco_default_join();
return 0;
}

124
test/main_trigger.cpp Normal file
View File

@ -0,0 +1,124 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
Asynco asynco;
class ClassWithTriggers {
Trigger<int> emitter1;
Trigger<string> emitter2;
public:
ClassWithTriggers(): emitter1(asynco), emitter2(asynco) {}
template<typename... T>
void on(const string& key, function<void(T...)> callback) {
if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) {
emitter1.on(key, callback);
}
else if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, string>) {
emitter2.on(key, callback);
}
}
template <typename... Args>
void tick(const string& key, Args&&... args) {
if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, int>) {
emitter1.tick(key, forward<Args>(args)...);
}
else if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, string>) {
emitter2.tick(key, forward<Args>(args)...);
}
else {
static_assert(sizeof...(Args) == 0, "Unsupported number or types of arguments");
}
}
};
int main() {
asynco.run(2);
/**
* initialization of typed events
*/
Trigger<int, int> ev2int = asynco.trigger<int, int>();
Trigger<int, string> evintString = asynco.trigger<int, string>();
Trigger<> evoid = asynco.trigger<>();
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
});
evintString.on("substract", [](int a, string b) {
cout << "Substract " << a-stoi(b) << endl;
});
evoid.on("void", []() {
cout << "Void emited" << endl;
});
// multiple listeners
string emited2 = "2";
evoid.on("void", [&]() {
cout << "Void emited " << emited2 << endl;
});
sleep(1);
/**
* Emit
*/
ev2int.tick("sum", 5, 8);
sleep(1);
evintString.tick("substract", 3, to_string(2));
sleep(1);
evoid.tick("void");
// Turn off the event listener
evoid.off("void");
evoid.tick("void"); // nothing is happening
class myOwnClass : public Trigger<int> {
public:
myOwnClass() : Trigger(asynco) {};
};
myOwnClass myclass;
Timer t = asynco.delayed( [&] {
myclass.tick("constructed", 1);
}, 200);
myclass.on("constructed", [] (int i) {
cout << "Constructed " << i << endl;
});
ClassWithTriggers mt;
mt.on<int>("int", function<void(int)>([&](int i) {
cout << "Emit int " << i << endl;
}));
mt.on<string>("string", function<void(string)>([&](string s) {
cout << "Emit string " << s << endl;
}));
mt.tick("int", 5);
mt.tick("string", string("Hello world"));
asynco.join();
return 0;
}

View File

@ -0,0 +1,118 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
class ClassWithTriggers {
Trigger<int> emitter1;
Trigger<string> emitter2;
public:
ClassWithTriggers(): emitter1(asynco_default_runtime()), emitter2(asynco_default_runtime()) {}
template<typename... T>
void on(const string& key, function<void(T...)> callback) {
if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) {
emitter1.on(key, callback);
}
else if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, string>) {
emitter2.on(key, callback);
}
}
template <typename... Args>
void tick(const string& key, Args&&... args) {
if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, int>) {
emitter1.tick(key, forward<Args>(args)...);
}
else if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, string>) {
emitter2.tick(key, forward<Args>(args)...);
}
else {
static_assert(sizeof...(Args) == 0, "Unsupported number or types of arguments");
}
}
};
int main() {
asynco_default_run();
/**
* initialization of typed events
*/
Trigger<int, int> ev2int = trigger<int, int>();
Trigger<int, string> evintString = trigger<int, string>();
Trigger<> evoid = trigger<>();
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
});
evintString.on("substract", [](int a, string b) {
cout << "Substract " << a-stoi(b) << endl;
});
evoid.on("void", []() {
cout << "Void emited" << endl;
});
// multiple listeners
string emited2 = "2";
evoid.on("void", [&]() {
cout << "Void emited " << emited2 << endl;
});
sleep(1);
/**
* Emit
*/
ev2int.tick("sum", 5, 8);
sleep(1);
evintString.tick("substract", 3, to_string(2));
sleep(1);
evoid.tick("void");
// Turn off the event listener
evoid.off("void");
evoid.tick("void"); // nothing is happening
class myOwnClass : public Trigger<int> {
public:
myOwnClass() : Trigger(asynco_default_runtime()) {};
};
myOwnClass myclass;
Timer t = delayed( [&] {
myclass.tick("constructed", 1);
}, 200);
myclass.on("constructed", [] (int i) {
cout << "Constructed " << i << endl;
});
ClassWithTriggers mt;
mt.on<int>("int", function<void(int)>([&](int i) {
cout << "Emit int " << i << endl;
}));
mt.on<string>("string", function<void(string)>([&](string s) {
cout << "Emit string " << s << endl;
}));
mt.tick("int", 5);
mt.tick("string", string("Hello world"));
asynco_default_join();
return 0;
}