Compare commits

..

No commits in common. "dev" and "coroutines" have entirely different histories.

25 changed files with 1222 additions and 1116 deletions

View File

@ -14,8 +14,7 @@ include_directories(lib)
# Dodaj biblioteku
add_library(asynco STATIC
src/asynco.cpp
src/asynco_default.cpp
src/engine.cpp
src/timers.cpp
)
@ -25,9 +24,6 @@ target_link_libraries(asynco Boost::system)
# Dodaj testove
add_subdirectory(test)
add_compile_options(-w)
# Instaliraj biblioteku
# install(TARGETS asynco DESTINATION lib)

233
README.md
View File

@ -13,12 +13,14 @@ The asynchronous filesystem was included solely to demonstrate how users can wra
- Object oriented
- Small and easy to integrate
- Header only
- Asynchronous programming
- Multithread
- Asynchronous timer functions: Periodic, Delayed (like setInterval and setTimeout from JS)
- Typed events (on, tick, off) (like EventEmitter from JS: on, emit, etc)
- Event loops
- Multiple parallel execution loops
- Asynchronous file IO
- Based on ASIO (Boost Asio)
- On C++20 support Boost.Asio coroutines
## Installation
@ -26,64 +28,37 @@ The asynchronous filesystem was included solely to demonstrate how users can wra
Just download the latest release and unzip it into your project.
```c++
// for default global runtime
#include "asynco/lib/asynco_default.hpp"
#define NUM_OF_RUNNERS 8 // To change the number of threads used by asynco, without this it runs according to the number of cores
#include "asynco/lib/asynco.hpp" // async_ (), await_()
#include "asynco/lib/triggers.hpp" // Trigger (event emitter)
#include "asynco/lib/timers.hpp" // Periodic, Delayed (like setInterval and setTimeout from JS)
#include "asynco/lib/filesystem.hpp" // for async read and write files
#include "asynco/lib/define.hpp" // async_, await_, asyncable_ defines
using namespace marcelb;
using namespace asynco;
int main() {
asynco_default_run();
// code
asynco_default_join()
return 0;
}
// own instace of runtime
#include "asynco/lib/asynco.hpp"
using namespace marcelb;
using namespace asynco;
int main() {
Asynco asynco;
asynco.run(2);
// code
asynco.join();
return 0;
}
// At the end of the main function, always set
_asynco_engine.run();
return 0;
```
## Usage
In the following sections, we will explore timers, function execution via the runtime, asynchronous invocation, and waiting for results. We will cover essential use cases involving triggers, and coroutines.
In the following sections, we will explore timers, function execution via the runtime, asynchronous invocation, and waiting for results. We will cover essential use cases involving triggers, file handling, and coroutines.
### Timers
We have one timer classes, int two mode Periodic (which runs a callback function periodically), and Delayed (delayed runs a callback function only once).
We have two timer classes, Periodic (which runs a callback function periodically), and Delayed (delayed runs a callback function only once).
```c++
// start periodic
Timer inter1 = periodic ([]() {
Periodic inter1 ([]() {
cout << "Interval 1" << endl;
}, 1000);
// or usint own instance runtime
/**
* Asynco asynco;
* asynco.run(2);
* Timer inter1 = asynco.periodic ([]() {
* cout << "Interval 1" << endl;
* }, 1000);
*/
// stop periodic
inter1.stop();
@ -94,7 +69,7 @@ int t = inter1.ticks();
bool stoped = inter1.stoped();
// start delayed
Timer time1 = delayed( [] () {
Delayed time1 ( [] () {
cout << "Timeout 1 " << endl;
}, 10000);
@ -118,7 +93,7 @@ Running functions at runtime, asynchronous execution, uses the `async_` call and
*/
async_ ( []() {
sleep(2); // only for simulating long duration function
sleep_for(2s); // only for simulating long duration function
cout << "nonsync " << endl;
return 5;
});
@ -151,12 +126,12 @@ async_ ( [&classes] () {
});
```
To wait for the result (blocking the flow) use `await_` (This does not block the event loop in principle. If the result is not ready for a short time, it starts another job in place while it waits.)
To wait for the result (blocking the flow) use `await_` (basically nothing more than a `.get()` call on a future object)
```c++
auto a = async_ ( []() {
sleep(2); // only for simulating long duration function
sleep_for(2s); // only for simulating long duration function
cout << "nonsync " << endl;
return 5;
});
@ -168,7 +143,7 @@ cout << await_(a) << endl;
*/
cout << await_(async_ ( [] () {
sleep(1); // only for simulating long duration function
sleep_for(chrono::seconds(1)); // only for simulating long duration function
cout << "await_ end" << endl;
return 4;
})) << endl;
@ -184,7 +159,104 @@ await_ ([]() {
});
```
Here too you can use your own runtime instance, only the methods are `.async()` and `.await()`
If multiple function calls do not depend on each other, you can call them and wait for the results later, better concurrency.
```c++
auto a = async_ ( []() {
cout << "A" << endl;
return 3;
});
auto b = async_ ( []() {
cout << "B" << endl;
throw runtime_error("Test exception");
return;
});
auto c = async_ ( []() {
cout << "C" << endl;
return "Hello";
});
int a_;
string c_;
auto await_all = [&] () {
a_ = await_(a);
await_(b);
c_ = await_(c);
};
try {
await_all();
cout << "a_ " << a_ << " c_ " << c_ << endl;
} catch (const exception& exc) {
cout << exc.what() << endl;
}
// // same type
vector<future<void>> fut_vec;
for (int i=0; i<5; i++) {
fut_vec.push_back(
async_ ( [i]() {
cout << "Async_ " << i << endl;
})
);
}
auto await_all = [&] () {
for (int i=0; i<fut_vec.size(); i++) {
await_ (fut_vec[i]);
}
};
```
Just an example:
```c++
/**
* Sleep with delayed sleep implement
**/
void sleep_to (int _time) {
promise<void> _promise;
Delayed t( [&]() {
_promise.set_value();
}, _time);
return _promise.get_future().get();
}
sleep_to(3000);
/**
* Catch promise reject
*/
void promise_reject (int _time) {
promise<void> _promise;
Delayed t( [&]() {
try {
// simulate except
throw runtime_error("Error simulation");
_promise.set_value();
} catch (...) {
_promise.set_exception(current_exception());
}
}, _time);
return _promise.get_future().get();
}
try {
promise_reject(3000);
} catch (runtime_error err) {
cout<< err.what() << endl;
}
```
### Triggers
@ -195,9 +267,9 @@ The library implements Triggers, which are basically typed Events.
* initialization of typed events
*/
Trigger<int, int> ev2int = trigger<int, int>();
Trigger<int, string> evintString = trigger<int, string>();
Trigger<> evoid = trigger<>();
Trigger<int, int> ev2int;
Trigger<int, string> evintString;
Trigger<> evoid;
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
@ -244,7 +316,7 @@ Extend own class whit events
```c++
class myOwnClass : public Trigger<int> {
public:
myOwnClass() : Trigger(asynco_default_runtime()) {};
myOwnClass() : Trigger() {};
};
myOwnClass myclass;
@ -268,8 +340,6 @@ class ClassWithTriggers {
Trigger<string> emitter2;
public:
ClassWithTriggers(): emitter1(asynco_default_runtime()), emitter2(asynco_default_runtime()) {}
template<typename... T>
void on(const string& key, function<void(T...)> callback) {
if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) {
@ -309,13 +379,55 @@ mt.tick("string", string("Hello world"));
```
Another example:
Asynchronous file IO
```c++
string data_;
fs::read("test.txt", [&data_] (string data, exception* error) {
if (error) {
cout << "Error " << error->what() << endl;
} else {
cout << "Data " << endl << data << endl;
data_ = data;
cout << "Data_" << data_ << endl;
}
});
fs::write("test1.txt", "Hello world", [] (exception* error) {
if (error) {
cout << "Error " << error->what() << endl;
} else {
cout << "Write successfuly" << endl;
}
});
auto future_data = fs::read("test.txt");
try {
string data = await_(future_data);
} catch (exception& err) {
cout << err.what() << endl;
}
auto future_status = fs::write("test.txt", "Hello world");
try {
await_(future_status);
} catch (exception& err) {
cout << err.what() << endl;
}
```
## Coroutine
If `define.hpp` is included, you can initialize coroutines with `boost::asio::awaitable<T>`.
If `define.hpp` is included, you can initialize coroutines using `asyncable<T>`; if not, just use `boost::asio::awaitable<T>`.
```c++
awaitable<int> c2(int a) {
asyncable<int> c2(int a) {
co_return a * 2;
}
@ -330,7 +442,7 @@ Or using a lambda expression:
```c++
async_([]() -> awaitable<void> {
async_([]() -> asyncable<void> {
std::cout << "Hello" << std::endl;
co_await c2(4);
co_return;
@ -354,15 +466,24 @@ If you need the result immediately, you can use a shorter notation
auto a = await_ ( c2(3));
cout << a << endl;
await_ ([]() -> awaitable<void> {
await_ ([]() -> asyncable<void> {
cout << "Hello" << endl;
co_return;
}());
```
Timers and triggers work the same with coroutines; it is important to call the coroutine with `async_` in the callback, and to call `async_`, wrap it with a lambda expression:
```c++
Periodic p([]() {
async_(c2(34));
}, 2000);
```
If you need a result, you can also retrieve it with `await_`.
Here too you can use your own runtime instance, only the methods are `.async()` and `.await()`
## License

View File

@ -1,188 +1,105 @@
#ifndef _ASYNCO_
#define _ASYNCO_
#include <vector>
#include <memory>
#include <type_traits>
#include <thread>
#include <future>
#include <functional>
#include "engine.hpp"
#include <iostream>
using namespace std;
#include <boost/asio.hpp>
#if __cplusplus >= 202002L
#include <boost/asio/awaitable.hpp>
#include <boost/asio/co_spawn.hpp>
#include <boost/asio/use_awaitable.hpp>
#endif
using namespace boost::asio;
#include "timers.hpp"
#include "trigger.hpp"
namespace marcelb {
namespace asynco {
/**
* Asynco runtime
* Used for all asynchronous capabilities of this wrapper
* Initializes threads and boost::asio::io_context
* Run the function asynchronously
*/
class Asynco {
vector<thread> _runners;
unique_ptr<io_service::work> _work;
void init_loops_in_threads(uint8_t threads);
public:
io_context io_ctx;
/**
* It starts the thread initialization and the Boost::Asio event loop in each of them
*/
void run(uint8_t threads = thread::hardware_concurrency());
/**
* Starts Boost::Asio event loop in the current thread
*/
void run_on_this();
/**
* Waits until all threads have finished working
*/
void join();
/**
* Run the function asynchronously in runtime
*/
template<class F, class... Args>
auto async(F&& f, Args&&... args) -> future<invoke_result_t<F, Args...>> {
using return_type = invoke_result_t<F, Args...>;
future<return_type> res = io_ctx.post(boost::asio::use_future(bind(forward<F>(f), forward<Args>(args)...)));
return res;
}
template<class F, class... Args>
auto async_(F&& f, Args&&... args) -> future<typename result_of<F(Args...)>::type> {
using return_type = typename result_of<F(Args...)>::type;
future<return_type> res = _asynco_engine.io_context.post(boost::asio::use_future(bind(forward<F>(f), forward<Args>(args)...)));
return res;
}
#if __cplusplus >= 202002L
/**
* Run the coroutine in runtime
*/
template <typename T>
future<T> async(boost::asio::awaitable<T> _coroutine) {
promise<T> promise;
auto future = promise.get_future();
/**
* Run the coroutine
*/
template <typename T>
std::future<T> async_(boost::asio::awaitable<T> _coroutine) {
std::promise<T> promise;
auto future = promise.get_future();
co_spawn(io_ctx, [_coroutine = move(_coroutine), promise = move(promise)]() mutable -> boost::asio::awaitable<void> {
try {
if constexpr (!is_void_v<T>) {
T result = co_await move(_coroutine);
promise.set_value(move(result));
} else {
co_await move(_coroutine);
promise.set_value(); // Za void ne postavljamo rezultat
}
} catch (...) {
promise.set_exception(current_exception()); // Postavljamo izuzetak
co_spawn(_asynco_engine.io_context, [_coroutine = std::move(_coroutine), promise = std::move(promise)]() mutable -> boost::asio::awaitable<void> {
try {
if constexpr (!std::is_void_v<T>) {
T result = co_await std::move(_coroutine);
promise.set_value(std::move(result));
} else {
co_await std::move(_coroutine);
promise.set_value(); // Za void ne postavljamo rezultat
}
}, boost::asio::detached);
} catch (...) {
promise.set_exception(std::current_exception()); // Postavljamo izuzetak
}
}, boost::asio::detached);
return future;
}
return future;
}
#endif
/**
* Wait until the asynchronous call completes
*/
template<typename T>
T await(future<T>& r, uint16_t time_us = 10) {
while (r.wait_for(std::chrono::microseconds(time_us)) != future_status::ready) {
io_ctx.poll_one();
}
return r.get();
/**
* Block until the asynchronous call completes - dont block asynco engine loop
*/
template<typename T>
T await_(future<T>& r, uint16_t time_us = 10) {
while (r.wait_for(std::chrono::microseconds(time_us)) != std::future_status::ready) {
_asynco_engine.io_context.poll_one();
}
return r.get();
}
/**
* Wait until the asynchronous call completes
*/
template<typename T>
T await(future<T>&& r, uint16_t time_us = 10) {
while (r.wait_for(std::chrono::microseconds(time_us)) != future_status::ready) {
io_ctx.poll_one();
}
return move(r).get();
/**
* Block until the asynchronous call completes - dont block asynco engine loop
*/
template<typename T>
T await_(future<T>&& r, uint16_t time_us = 10) {
while (r.wait_for(std::chrono::microseconds(time_us)) != std::future_status::ready) {
_asynco_engine.io_context.poll_one();
}
return move(r).get();
}
/**
* Run the function asynchronously an block until completes
*/
template<class F, class... Args>
auto await_(F&& f, Args&&... args) -> typename result_of<F(Args...)>::type {
return await_(
async_(f, args...)
);
}
/**
* Run the function asynchronously an wait until completes
*/
template<class F, class... Args>
auto await(F&& f, Args&&... args) -> invoke_result_t<F, Args...> {
return await(
async(f, args...)
);
}
#if __cplusplus >= 202002L
/**
* Run the coruotine and wait
*/
template <typename T>
T await(boost::asio::awaitable<T> _coroutine) {
return await(
async(
move(_coroutine)
));
}
/**
* Run the coruotine and wait
*/
template <typename T>
T await_(boost::asio::awaitable<T> _coroutine) {
return await_(
async_(
move(_coroutine)
));
}
#endif
/**
* Wait until the multiple asynchronous call completes
* Use only on no-void calls
*/
template<typename... F>
auto await(F&&... f) -> tuple<typename decay<decltype(await(f))>::type...> {
return make_tuple(await(f)...);
}
/**
* Wait until the multiple asynchronous call completes
* Use only on no-void calls
*/
template<typename... F>
auto await(F&... f) -> tuple<typename decay<decltype(await(f))>::type...> {
return make_tuple(await(f)...);
}
/**
* Initialize the delayed timer
*/
Timer delayed(function<void()> callback, uint64_t time);
/**
* Initialize the periodic timer
*/
Timer periodic(function<void()> callback, uint64_t time);
/**
* Initialize trigger (typed event)
*/
template<typename... T>
Trigger<T...> trigger() {
return Trigger<T...>(*this);
}
};
}
}

View File

@ -1,155 +0,0 @@
#ifndef _ASYNCO_DEFAULT_
#define _ASYNCO_DEFAULT_
#include "asynco.hpp"
namespace marcelb {
namespace asynco {
/**
* Default runtime
*/
extern Asynco Asynco_Default_Runtime;
/**
* Run the function asynchronously in default runtime
*/
template<class F, class... Args>
auto async_(F&& f, Args&&... args) -> future<invoke_result_t<F, Args...>> {
return Asynco_Default_Runtime.async(bind(forward<F>(f), forward<Args>(args)...));
}
#if __cplusplus >= 202002L
/**
* Run the coroutine in default runtime
*/
template <typename T>
std::future<T> async_(boost::asio::awaitable<T> _coroutine) {
return Asynco_Default_Runtime.async(move(_coroutine));
}
#endif
/**
* Wait until the asynchronous call completes
*/
template<typename T>
T await_(future<T>& r, uint16_t time_us = 10) {
return Asynco_Default_Runtime.await(r, time_us);
}
/**
* Wait until the asynchronous call completes
*/
template<typename T>
T await_(future<T>&& r, uint16_t time_us = 10) {
return Asynco_Default_Runtime.await(r, time_us);
}
/**
* Run the function asynchronously an wait until completes
*/
template<class F, class... Args>
auto await_(F&& f, Args&&... args) -> invoke_result_t<F, Args...> {
return Asynco_Default_Runtime.await(bind(forward<F>(f), forward<Args>(args)...));
}
#if __cplusplus >= 202002L
/**
* Run the coruotine and wait
*/
template <typename T>
T await_(boost::asio::awaitable<T> _coroutine) {
return Asynco_Default_Runtime.await(move(_coroutine));
}
#endif
/**
* Wait until the multiple asynchronous call completes
* Use only on no-void calls
*/
template<typename... F>
auto await_(F&&... f) -> std::tuple<typename std::decay<decltype(Asynco_Default_Runtime.await(f))>::type...> {
return Asynco_Default_Runtime.await(move(f)...);
}
/**
* Wait until the multiple asynchronous call completes
* Use only on no-void calls
*/
template<typename... F>
auto await_(F&... f) -> std::tuple<typename std::decay<decltype(Asynco_Default_Runtime.await(f))>::type...> {
return Asynco_Default_Runtime.await(f...);;
}
/**
* Initialize the delayed timer
*/
Timer delayed(function<void()> callback, uint64_t time);
/**
* Initialize the periodic timer
*/
Timer periodic(function<void()> callback, uint64_t time);
/**
* Initialize trigger (typed event)
*/
template<typename... T>
Trigger<T...> trigger() {
return Trigger<T...>(Asynco_Default_Runtime);
}
/**
* Get reference of default runtime
*/
Asynco& asynco_default_runtime();
/**
* Run default runtime
*/
void asynco_default_run();
/**
* Run default runtime in this thread
*/
void asynco_default_run_on_this();
/**
* Waits until all threads have finished working
*/
void asynco_default_join();
/**
* Get reference of boost::asio::io_context
*/
io_context& asynco_default_io_context();
/**
* Run the function asynchronously in default runtime
*/
#define async_ marcelb::asynco::async_
/**
* Wait until the asynchronous call completes
*/
#define await_ marcelb::asynco::await_
}
}
#endif

23
lib/define.hpp Normal file
View File

@ -0,0 +1,23 @@
#ifndef _ASYNCO_DEFINE_
#define _ASYNCO_DEFINE_
namespace marcelb {
namespace asynco {
/**
* Alternative names of functions - mostly for the sake of more beautiful coloring of the code
*/
#define async_ marcelb::asynco::async_
#define await_ marcelb::asynco::await_
#if __cplusplus >= 202002L
#define asyncable boost::asio::awaitable
#endif
}
}
#endif

71
lib/engine.hpp Normal file
View File

@ -0,0 +1,71 @@
#ifndef _ASYNCO_ENGINE_
#define _ASYNCO_ENGINE_
#include <vector>
#include <memory>
using namespace std;
#include <boost/asio.hpp>
namespace marcelb {
namespace asynco {
#define HW_CONCURRENCY_MINIMAL 4
/**
* Internal anonymous class for initializing the ASIO context and thread pool
* !!! It is anonymous to protect against use in the initialization of other objects of the same type !!!
*/
class Engine {
public:
boost::asio::io_context io_context;
void run() {
for (auto& runner : runners) {
runner.join();
}
}
private:
unique_ptr<boost::asio::io_service::work> work { [&] () {
return new boost::asio::io_service::work(io_context);
} ()};
vector<thread> runners { [&] () {
vector<thread> _runs;
unsigned int num_of_runners;
#ifdef NUM_OF_RUNNERS
num_of_runners = NUM_OF_RUNNERS;
#else
num_of_runners = thread::hardware_concurrency();
if (num_of_runners < HW_CONCURRENCY_MINIMAL) {
num_of_runners = HW_CONCURRENCY_MINIMAL;
}
#endif
for (int i=0; i<num_of_runners; i++) {
_runs.push_back(thread ( [this] () {
io_context.run();
}));
}
return _runs;
} ()};
};
extern Engine _asynco_engine;
}
}
#endif

115
lib/filesystem.hpp Normal file
View File

@ -0,0 +1,115 @@
#ifndef _ASYNCO_FS_
#define _ASYNCO_FS_
#include "asynco.hpp"
using namespace marcelb;
using namespace asynco;
#include <fstream>
using namespace std;
namespace marcelb {
namespace asynco {
namespace fs {
/**
* Asynchronous file reading with callback after read complete
*/
template<typename Callback>
void read(string path, Callback&& callback) {
asynco::async_( [&path, callback] () {
string content;
try {
string line;
ifstream file (path);
if (file.is_open()) {
line.clear();
while ( getline (file,line) ) {
content += line + "\n";
}
file.close();
}
else {
throw runtime_error("Unable to open file");
}
callback(content, nullptr);
} catch(exception& error) {
callback(content, &error);
}
});
}
/**
* Asynchronous file reading
*/
future<string> read(string path) {
return asynco::async_( [&path] () {
string content;
string line;
ifstream file (path);
if (file.is_open()) {
line.clear();
while ( getline (file,line) ) {
content += line + "\n";
}
file.close();
return content;
}
else {
throw runtime_error("Unable to open file");
}
});
}
/**
* Asynchronous file writing with callback after write complete
*/
template<typename Callback>
void write(string path, string content, Callback&& callback) {
asynco::async_( [&path, &content, callback] () {
try {
ofstream file (path);
if (file.is_open()) {
file << content;
file.close();
}
else {
throw runtime_error("Unable to open file");
}
callback(nullptr);
} catch(exception& error) {
callback(&error);
}
});
}
/**
* Asynchronous file writing with callback after write complete
*/
future<void> write(string path, string content) {
return asynco::async_( [&path, &content] () {
ofstream file (path);
if (file.is_open()) {
file << content;
file.close();
return;
}
else {
throw runtime_error("Unable to open file");
}
});
}
}
}
}
#endif

View File

@ -2,11 +2,9 @@
#define _ASYNCO_TIMERS_
#include <chrono>
#include <iostream>
using namespace std;
#include <boost/asio.hpp>
using namespace boost::asio;
#include "asynco.hpp"
namespace marcelb {
namespace asynco {
@ -23,19 +21,13 @@ int64_t rtime_ms();
int64_t rtime_us();
enum TimerType {
Delayed,
Periodic
};
/**
* Core timer class for construct time async functions
*/
class Timer {
io_context& io_ctx;
steady_timer st;
boost::asio::steady_timer st;
bool _stop = false;
TimerType type;
bool repeate;
function<void()> callback;
uint64_t time;
uint64_t _ticks = 0;
@ -49,7 +41,7 @@ class Timer {
/**
* The constructor creates the steady_timer and accompanying variables and runs a method to initialize the timer
*/
Timer (io_context& io_ctx, function<void()> _callback, uint64_t _time, TimerType _type = TimerType::Delayed);
Timer (function<void()> _callback, uint64_t _time, bool _repeate);
/**
* Stop timer
@ -68,22 +60,96 @@ class Timer {
*/
uint64_t ticks();
/**
* Get is the delayed callback runned
*/
bool expired();
/**
* The logic status of the timer stop state
*/
bool stoped();
/**
* The destructor stops the timer
*/
~Timer();
};
/**
* Class periodic for periodic execution of the callback in time in ms
*/
class Periodic {
shared_ptr<Timer> _timer;
public:
/**
* Constructor initializes a shared pointer of type timer
*/
Periodic(function<void()> callback, uint64_t time);
/**
* Stop periodic
* The stop flag is set and periodic remove it from the queue
*/
void stop();
/**
* Run callback now
* Forces the callback function to run independently of the periodic
*/
void now();
/**
* Get the number of times the periodic callback was runned
*/
uint64_t ticks();
/**
* The logic status of the periodic stop state
*/
bool stoped();
/**
* The destructor stops the periodic
*/
~Periodic();
};
/**
* Class delayed for delayed callback execution in ms
*/
class Delayed {
shared_ptr<Timer> _timer;
public:
/**
* Constructor initializes a shared pointer of type timer
*/
Delayed(function<void()> callback, uint64_t time);
/**
* Stop delayed
* The stop flag is set and delayed remove it from the queue
*/
void stop();
/**
* Run callback now
* Forces the callback function to run independently of the delayed
*/
void now();
/**
* Get is the delayed callback runned
*/
bool expired();
/**
* The logic status of the delayed stop state
*/
bool stoped();
/**
* The destructor stops the delayed
*/
~Delayed();
};
}
}

View File

@ -8,12 +8,10 @@
using namespace std;
#include "asynco.hpp"
#include "engine.hpp"
namespace marcelb {
namespace asynco {
class Asynco;
/**
* Trigger class, for event-driven programming.
* These events are typed according to the arguments of the callback function
@ -21,13 +19,10 @@ class Asynco;
template<typename... T>
class Trigger {
private:
Asynco& engine;
mutex m_eve;
unordered_map<string, vector<function<void(T...)>>> triggers;
public:
Trigger(Asynco& _engine)
: engine(_engine) {}
/**
* Defines event by key, and callback function
@ -37,7 +32,6 @@ class Trigger {
triggers[key].push_back(callback);
}
/**
* It emits an event and sends a callback function saved according to the key with the passed parameters
*/
@ -47,7 +41,7 @@ class Trigger {
if (it_eve != triggers.end()) {
for (uint i =0; i<it_eve->second.size(); i++) {
auto callback = bind(it_eve->second[i], forward<Args>(args)...);
engine.async(callback);
asynco::async_(callback);
}
}
}
@ -55,7 +49,7 @@ class Trigger {
/**
* Remove an Trigger listener from an event
*/
void off(const string& key) {
void off(const string& key) {
lock_guard _off(m_eve);
triggers.erase(key);
}
@ -68,6 +62,7 @@ class Trigger {
triggers.clear();
}
/**
* Get num of listeners by an Trigger key
*/

View File

@ -1,41 +0,0 @@
#include "../lib/asynco.hpp"
namespace marcelb::asynco {
void Asynco::init_loops_in_threads(uint8_t threads) {
for (int i=0; i<threads; i++) {
_runners.push_back(thread ( [this] () {
io_ctx.run();
}));
}
}
void Asynco::run(uint8_t threads) {
_work = make_unique<io_service::work>(io_ctx);
init_loops_in_threads(threads);
}
void Asynco::run_on_this() {
if (!_work) {
_work = make_unique<io_service::work>(io_ctx);
}
io_ctx.run();
}
void Asynco::join() {
for (auto& runner : _runners) {
runner.join();
}
}
Timer Asynco::delayed(function<void()> callback, uint64_t time) {
return Timer(io_ctx, callback, time, TimerType::Delayed);
}
Timer Asynco::periodic(function<void()> callback, uint64_t time) {
return Timer(io_ctx, callback, time, TimerType::Periodic);
}
};

View File

@ -1,36 +0,0 @@
#include "../lib/asynco_default.hpp"
namespace marcelb::asynco {
Asynco Asynco_Default_Runtime;
Timer delayed(function<void()> callback, uint64_t time) {
return Timer(Asynco_Default_Runtime.io_ctx, callback, time, TimerType::Delayed);
}
Timer periodic(function<void()> callback, uint64_t time) {
return Timer(Asynco_Default_Runtime.io_ctx, callback, time, TimerType::Periodic);
}
Asynco& asynco_default_runtime() {
return Asynco_Default_Runtime;
}
void asynco_default_run() {
Asynco_Default_Runtime.run();
}
void asynco_default_run_on_this() {
Asynco_Default_Runtime.run_on_this();
}
void asynco_default_join() {
Asynco_Default_Runtime.join();
}
io_context& asynco_default_io_context() {
return Asynco_Default_Runtime.io_ctx;
}
};

7
src/engine.cpp Normal file
View File

@ -0,0 +1,7 @@
#include "../lib/engine.hpp"
namespace marcelb::asynco {
Engine _asynco_engine;
};

View File

@ -3,13 +3,13 @@
namespace marcelb::asynco {
int64_t rtime_ms() {
return std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now()
return chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
int64_t rtime_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now()
return chrono::duration_cast<chrono::microseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
@ -18,8 +18,8 @@ void Timer::init() {
st.async_wait( [this] (const boost::system::error_code&) {
if (!_stop) {
callback();
if (type == TimerType::Periodic) {
st = steady_timer(io_ctx, boost::asio::chrono::milliseconds(time));
if (repeate) {
st = boost::asio::steady_timer(_asynco_engine.io_context, boost::asio::chrono::milliseconds(time));
init();
}
_ticks++;
@ -27,13 +27,13 @@ void Timer::init() {
});
}
Timer::Timer (io_context& _io_ctx, function<void()> _callback, uint64_t _time, TimerType _type):
io_ctx(_io_ctx),
st(io_ctx, boost::asio::chrono::milliseconds(_time)),
Timer::Timer (function<void()> _callback, uint64_t _time, bool _repeate) :
st(_asynco_engine.io_context, boost::asio::chrono::milliseconds(_time)),
_stop(false),
type(_type),
repeate(_repeate),
callback(_callback),
time(_time) {
init();
}
@ -50,10 +50,6 @@ uint64_t Timer::ticks() {
return _ticks;
}
bool Timer::expired() {
return bool(_ticks);
}
bool Timer::stoped() {
return _stop;
}
@ -62,4 +58,53 @@ Timer::~Timer() {
stop();
}
Periodic::Periodic(function<void()> callback, uint64_t time) :
_timer(make_shared<Timer> (callback, time, true)) {
}
void Periodic::stop() {
_timer->stop();
}
void Periodic::now() {
_timer->now();
}
uint64_t Periodic::ticks() {
return _timer->ticks();
}
bool Periodic::stoped() {
return _timer->stoped();
}
Periodic::~Periodic() {
stop();
}
Delayed::Delayed(function<void()> callback, uint64_t time) :
_timer(make_shared<Timer> (callback, time, false)) {
}
void Delayed::stop() {
_timer->stop();
}
void Delayed::now() {
_timer->now();
}
bool Delayed::expired() {
return bool(_timer->ticks());
}
bool Delayed::stoped() {
return _timer->stoped();
}
Delayed::~Delayed() {
stop();
}
};

View File

@ -1,29 +1,4 @@
add_executable(asynco_default main_default.cpp)
target_link_libraries(asynco_default asynco Boost::system)
add_executable(asynco_test main.cpp)
add_executable(asynco_init main_init.cpp)
target_link_libraries(asynco_init asynco Boost::system)
add_executable(asynco_async_default main_async_default.cpp)
target_link_libraries(asynco_async_default asynco Boost::system)
add_executable(asynco_async main_async.cpp)
target_link_libraries(asynco_async asynco Boost::system)
add_executable(asynco_timers_default main_timers_default.cpp)
target_link_libraries(asynco_timers_default asynco Boost::system)
add_executable(asynco_timers main_timers.cpp)
target_link_libraries(asynco_timers asynco Boost::system)
add_executable(asynco_trigger_default main_trigger_default.cpp)
target_link_libraries(asynco_trigger_default asynco Boost::system)
add_executable(asynco_trigger main_trigger.cpp)
target_link_libraries(asynco_trigger asynco Boost::system)
add_executable(asynco_coroutine_default main_coroutine_default.cpp)
target_link_libraries(asynco_coroutine_default asynco Boost::system)
add_executable(asynco_coroutine main_coroutine.cpp)
target_link_libraries(asynco_coroutine asynco Boost::system)
# Linkaj test sa Asynco bibliotekom
target_link_libraries(asynco_test asynco Boost::system)

610
test/main.cpp Normal file
View File

@ -0,0 +1,610 @@
#define NUM_OF_RUNNERS 4
#include "asynco.hpp"
#include "trigger.hpp"
#include "filesystem.hpp"
#include "timers.hpp"
#include "define.hpp"
using namespace marcelb::asynco;
#include <iostream>
#include <unistd.h>
#include <thread>
#include <future>
#include <vector>
using namespace std;
using namespace this_thread;
// asyncable<int> c2 (int a) {
// co_return a*2;
// }
// asyncable<void> sleep_co (int a) {
// sleep(a);
// cout << "Gotov" << endl;
// co_return;
// }
// asyncable<void> c () {
// cout << "Ispisi" << endl;
// co_await c2(0);
// co_return;
// }
// void sleep_to (int _time) {
// promise<void> _promise;
// Delayed t( [&]() {
// _promise.set_value();
// }, _time);
// return _promise.get_future().get();
// }
// void sleep_to (int _time) {
// promise<void> _promise;
// Delayed t( [&]() {
// _promise.set_value();
// }, _time);
// await_ (_promise.get_future(), 100);
// }
// future<void> sleep_to (int _time) {
// promise<void> _promise;
// future<void> _future = _promise.get_future();
// Delayed t( [&]() {
// _promise.set_value();
// }, _time);
// return _future;
// }
// void promise_reject (int _time) {
// promise<void> _promise;
// Delayed t( [&]() {
// try {
// // simulate except
// throw runtime_error("Error simulation");
// _promise.set_value();
// } catch (...) {
// _promise.set_exception(current_exception());
// }
// }, _time);
// return _promise.get_future().get();
// }
// void notLambdaFunction() {
// cout << "Call to not lambda function" << endl;
// }
// class clm {
// public:
// void classMethode() {
// cout << "Call class method" << endl;
// }
// };
// // // ------------------ EXTEND OWN CLASS WITH EVENTS -------------------
// class myOwnClass : public Trigger<int> {
// public:
// myOwnClass() : Trigger() {};
// };
// // ----------------- MULTIPLE TRIGGERS IN ONE CLASS ------------------
// class ClassWithTriggers {
// Trigger<int> emitter1;
// Trigger<string> emitter2;
// public:
// template<typename... T>
// void on(const string& key, function<void(T...)> callback) {
// if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) {
// emitter1.on(key, callback);
// }
// else if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, string>) {
// emitter2.on(key, callback);
// }
// }
// template <typename... Args>
// void tick(const string& key, Args&&... args) {
// if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, int>) {
// emitter1.tick(key, forward<Args>(args)...);
// }
// else if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, string>) {
// emitter2.tick(key, forward<Args>(args)...);
// }
// else {
// static_assert(sizeof...(Args) == 0, "Unsupported number or types of arguments");
// }
// }
// };
int main () {
auto start = rtime_ms();
// --------------- TIME ASYNCHRONOUS FUNCTIONS --------------
/**
* Init Periodic and delayed; clear Periodic and delayed
*/
// Periodic inter1 ([&]() {
// cout << "Periodic prvi " << rtime_ms() - start << endl;
// }, 1000);
// Periodic inter2 ([&]() {
// cout << "Periodic drugi " << rtime_ms() - start << endl;
// }, 2000);
// Periodic inter3 ([&]() {
// cout << "Periodic treći " << rtime_ms() - start << endl;
// }, 1000);
// Periodic inter4 ([&]() {
// // cout << "Periodic cetvrti " << rtime_ms() - start << endl;
// cout << "Ticks " << inter3.ticks() << endl;
// }, 500);
// Periodic inter5 ([&]() {
// cout << "Periodic peti " << rtime_ms() - start << endl;
// }, 2000);
// Periodic inter6 ([&]() {
// cout << "Periodic sesti " << rtime_ms() - start << endl;
// }, 3000);
// Delayed time1 ( [&] () {
// cout << "Close Periodic 1 i 2 " << rtime_ms() - start << endl;
// inter1.stop();
// cout << "inter1.stop " << endl;
// inter2.stop();
// cout << "inter2.stop " << endl;
// }, 8000);
// Delayed time2 ([&] () {
// cout << "Close Periodic 3 " << rtime_ms() - start << endl;
// inter3.stop();
// cout << "Stoped " << inter3.stoped() << endl;
// // time1.stop();
// }, 5000);
// if (time2.expired()) {
// cout << "isteko " << endl;
// } else {
// cout << "nije isteko " << endl;
// }
// // sleep(6);
// if (time2.expired()) {
// cout << "isteko " << endl;
// } else {
// cout << "nije isteko " << endl;
// }
// // // // ------------------------ MAKE FUNCTIONS ASYNCHRONOUS -------------------------
// // /**
// // * Run an function asyncronic
// // */
// async_ ( []() {
// sleep_for(2s); // only for simulate log duration function
// cout << "asynco 1" << endl;
// return 5;
// });
// /**
// * Call not lambda function
// */
// async_ (notLambdaFunction);
// await_ (
// async_ (
// notLambdaFunction
// )
// );
// // async(launch::async, [] () {
// // cout << "Another thread in async style!" << endl;
// // });
// // /**
// // * Call class method
// // */
// clm classes;
// async_ ( [&classes] () {
// classes.classMethode();
// });
// sleep(5);
// // /**
// // * await_ after runned as async
// // */
// auto aa = async_ ( []() {
// sleep_for(2s); // only for simulate log duration function
// cout << "async_ 2" << endl;
// return 5;
// });
// cout << await_(aa) << endl;
// cout << "print after async_ 2" << endl;
// /**
// * await_ async function call and use i cout
// */
// cout << await_(async_ ( [] () {
// sleep_for(chrono::seconds(1)); // only for simulate log duration function
// cout << "await_ end" << endl;
// return 4;
// })) << endl;
// /**
// * Sleep with Delayed sleep implement
// */
// sleep_to(3000);
// cout << "sleep_to " << rtime_ms() - start << endl;
// /**
// * Catch promise reject
// */
// try {
// promise_reject(3000);
// } catch (runtime_error err) {
// cout<< err.what() << endl;
// }
// cout << "promise_reject " << rtime_ms() - start << endl;
// /**
// * Nested asynchronous invocation
// */
// async_ ( [] {
// cout << "idemo ..." << endl;
// async_ ( [] {
// cout << "ugdnježdena async funkcija " << endl;
// });
// });
// // -------------------------- AWAIT ALL ----------------------------------
// auto a = async_ ( []() {
// cout << "A" << endl;
// return 3;
// });
// auto b = async_ ( []() {
// cout << "B" << endl;
// throw runtime_error("Test exception");
// return;
// });
// auto c = async_ ( []() {
// cout << "C" << endl;
// return "Hello";
// });
// int a_;
// string c_;
// auto await_all = [&] () {
// a_ = await_(a);
// await_(b);
// c_ = await_(c);
// };
// try {
// await_all();
// cout << "a_ " << a_ << " c_ " << c_ << endl;
// } catch (const exception& exc) {
// cout << exc.what() << endl;
// }
// // // same type
// vector<future<void>> fut_vec;
// for (int i=0; i<5; i++) {
// fut_vec.push_back(
// async_ ( [i]() {
// cout << "Async_ " << i << endl;
// })
// );
// }
// auto await_all2 = [&] () {
// for (int i=0; i<fut_vec.size(); i++) {
// await_ (fut_vec[i]);
// }
// };
// await_all2();
// // --------------- EVENTS -------------------
// /**
// * initialization of typed events
// */
// Trigger<int, int> ev2int;
// Trigger<int, string> evintString;
// Trigger<> evoid;
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum " << a+b << endl;
// });
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum done" << endl;
// });
// evintString.on("substract", [](int a, string b) {
// cout << "Substract " << a-stoi(b) << endl;
// });
// evoid.on("void", []() {
// cout << "Void emited" << endl;
// });
// string emited2 = "2";
// evoid.on("void", [&]() {
// cout << "Void emited " << emited2 << endl;
// });
// evoid.tick("void");
// sleep(1);
// /**
// * Emit
// */
// ev2int.tick("sum", 5, 8);
// sleep(1);
// evintString.tick("substract", 3, to_string(2));
// sleep(1);
// evoid.off("void");
// evoid.tick("void");
// cout << "Ukupno 2 int " << ev2int.listeners() << endl;
// cout << "Ukupno evintString " << evintString.listeners() << endl;
// cout << "Ukupno evoid " << evoid.listeners() << endl;
// cout << "Ukupno 2 int " << ev2int.listeners("sum") << endl;
// /**
// * Own class
// */
// myOwnClass myclass;
// Delayed t( [&] {
// myclass.tick("constructed", 1);
// }, 200);
// myclass.on("constructed", [] (int i) {
// cout << "Constructed " << i << endl;
// });
// /**
// *
// * Use class with multiple triggers
// *
// */
// ClassWithTriggers mt;
// mt.on<int>("int", function<void(int)>([&](int i) {
// cout << "Emit int " << i << endl;
// }));
// mt.on<string>("string", function<void(string)>([&](string s) {
// cout << "Emit string " << s << endl;
// }));
// mt.tick("int", 5);
// mt.tick("string", string("Hello world"));
// auto status = fs::read("test1.txt");
// try {
// auto data = await_(status);
// cout << data;
// } catch (exception& err) {
// cout << err.what() << endl;
// }
// string data_;
// auto start_read = rtime_us();
// fs::read("test1.txt", [&data_, &start_read] (string data, exception* error) {
// if (error) {
// cout << "Error " << error->what() << endl;
// } else {
// // cout << "Data " << endl << data << endl;
// // data_ = data;
// // cout << "Data_" << data_ << endl;
// cout << "read " << rtime_us() - start_read << endl;
// }
// });
// ----------------------------------------------------------------------------------------------------
// auto i = async_ ( []() -> asyncable<int> {
// cout << "aaaa" << endl;
// co_return 5;
// });
// auto i = async_ (retint());
// auto i_ = await_(i);
// cout << i_ << endl;
// Periodic a( []() -> asyncable<void> {
// cout << "corutina" << endl;
// // co_await retint();
// }, 2000);
// Periodic b_( []() {
// cout << "funckija" << endl;
// }, 2000);
// Trigger<int, int> ev2int;
// Trigger<int, string> evintString;
// Trigger<> evoid;
// ev2int.on("sum", [](int a, int b) -> asyncable<void> {
// cout << "Sum " << a+b << endl;
// });
// ev2int.on("sum", [](int a, int b) -> asyncable<void> {
// cout << "Sum done" << endl;
// });
// evintString.on("substract", [](int a, string b) -> asyncable<void> {
// cout << "Substract " << a-stoi(b) << endl;
// });
// evoid.on("void", []() {
// auto a = await_ (async_ (c2(34)));
// cout << "A " << a << endl;
// });
// auto c1 = []() -> asyncable<void> {
// cout << "Roge " << endl;
// co_return;
// };
// auto a = await_ ( c2(3));
// cout << a << endl;
// await_ ([]() -> asyncable<void> {
// cout << "Hello" << endl;
// co_await c2(4);
// co_return;
// }());
// async_ ([]() -> asyncable<void> {
// cout << "1" << endl;
// co_await sleep_co(1);
// co_return;
// }());
// async_ ([]() -> asyncable<void> {
// cout << "2" << endl;
// co_await sleep_co(1);
// co_return;
// }());
// async_ ([]() -> asyncable<void> {
// cout << "3" << endl;
// co_await sleep_co(1);
// co_return;
// }());
// async_ ([]() -> asyncable<void> {
// cout << "4" << endl;
// co_await sleep_co(1);
// co_return;
// }());
// async_ ([]() -> asyncable<void> {
// cout << "5" << endl;
// co_await sleep_co(1);
// co_return;
// }());
// await_ ([]() {
// cout << "Hello" << endl;
// });
// Periodic p( []() {
// async_ (
// c2(34)
// );
// }, 2000);
// await_( async_ ( [c1 = move(c1)]() -> asyncable<void> {
// cout << "Baba roga" << endl;
// co_await c1();
// }));
// string emited2 = "2";
// evoid.on("void", [&]() -> asyncable<void> {
// cout << "Void emited " << emited2 << endl;
// });
// evoid.tick("void");
// vector<future<void>> futures;
// for (int i=0; i<20; i++) {
// futures.push_back(
// async_([a = i](){
// for (int i=0; i<1000; i++) {
// cout << a << " " << i << endl;
// // sleep_to(i);
// }
// })
// );
// }
// for (int i=0; i<20; i++) {
// await_(futures[i]);
// // await_(futures[i]);
// }
cout << "-------------end main------------- " << rtime_ms() - start << endl;
_asynco_engine.run();
return 0;
}

View File

@ -1,84 +0,0 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
Asynco asynco;
void notLambdaFunction() {
cout << "Call to not lambda function" << endl;
}
class clm {
public:
void classMethode() {
cout << "Call class method" << endl;
}
};
void sleep_to (int _time) {
promise<void> _promise;
Timer t = asynco.delayed( [&]() {
_promise.set_value();
}, _time);
return asynco.await(_promise.get_future());
}
int main() {
asynco.run(2);
/**
* Run an lambda function asynchronously
*/
asynco.async ( []() {
cout << "async " << endl;
});
/**
* Run not lambda function
*/
asynco.async (notLambdaFunction);
/**
* Run class method
*/
clm classes;
asynco.async ( [&classes] () {
classes.classMethode();
});
//------------------AWAIT----------------------
auto a = asynco.async ( []() {
sleep_to(1000); //only for simulating long duration function
return 5;
});
cout << asynco.await(a) << endl;
/**
* await async function call and use i cout
*/
cout << asynco.await(asynco.async ( [] () {
sleep_to(1000);
cout << "await_ end" << endl;
return 4;
})) << endl;
asynco.await ([]() { // run in runtime and await now
cout << "Hello" << endl;
});
asynco.join();
return 0;
}

View File

@ -1,82 +0,0 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
void notLambdaFunction() {
cout << "Call to not lambda function" << endl;
}
class clm {
public:
void classMethode() {
cout << "Call class method" << endl;
}
};
void sleep_to (int _time) {
promise<void> _promise;
Timer t = delayed( [&]() {
_promise.set_value();
}, _time);
return await_(_promise.get_future());
}
int main() {
asynco_default_run();
/**
* Run an lambda function asynchronously
*/
async_ ( []() {
cout << "async " << endl;
});
/**
* Run not lambda function
*/
async_ (notLambdaFunction);
/**
* Run class method
*/
clm classes;
async_ ( [&classes] () {
classes.classMethode();
});
//------------------AWAIT----------------------
auto a = async_ ( []() {
sleep_to(1000); //only for simulating long duration function
return 5;
});
cout << await_(a) << endl;
/**
* await async function call and use i cout
*/
cout << await_(async_ ( [] () {
sleep_to(1000);
cout << "await_ end" << endl;
return 4;
})) << endl;
await_ ([]() { // run in runtime and await now
cout << "Hello" << endl;
});
asynco_default_join();
return 0;
}

View File

@ -1,43 +0,0 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
awaitable<int> c2(int a) {
co_return a * 2;
}
int main() {
Asynco asynco; // or global
asynco.run(2);
asynco.async(c2(4));
asynco.async([]() -> awaitable<void> {
std::cout << "Hello" << std::endl;
co_await c2(4);
co_return;
}());
int r = asynco.await(
asynco.async(
c2(10)
));
auto a = asynco.await( c2(3));
cout << a << endl;
asynco.await([]() -> awaitable<void> {
cout << "Hello" << endl;
co_return;
}());
asynco.join();
return 0;
}

View File

@ -1,41 +0,0 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
awaitable<int> c2(int a) {
co_return a * 2;
}
int main() {
asynco_default_run();
async_(c2(4));
async_([]() -> awaitable<void> {
std::cout << "Hello" << std::endl;
co_await c2(4);
co_return;
}());
int r = await_(
async_(
c2(10)
));
auto a = await_ ( c2(3));
cout << a << endl;
await_ ([]() -> awaitable<void> {
cout << "Hello" << endl;
co_return;
}());
asynco_default_join();
return 0;
}

View File

@ -1,14 +0,0 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
int main() {
asynco_default_run();
// code
asynco_default_join();
return 0;
}

View File

@ -1,16 +0,0 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
int main() {
Asynco asynco;
asynco.run(2);
// code
asynco.join();
return 0;
}

View File

@ -1,41 +0,0 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
int main() {
Asynco asynco;
asynco.run(2);
Timer inter1 = asynco.periodic ([]() {
cout << "Interval 1" << endl;
}, 1000);
// stop periodic
inter1.stop();
// how many times it has expired
int ti = inter1.ticks();
// is it stopped
bool stoped_i = inter1.stoped();
// start delayed
Timer time1 = asynco.delayed ( [] () {
cout << "Timeout 1 " << endl;
}, 10000);
// stop delayed
time1.stop();
// is it expired
int tt = time1.expired();
// is it stopped
bool stoped_t = time1.stoped();
asynco.join();
return 0;
}

View File

@ -1,40 +0,0 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
int main() {
asynco_default_run();
Timer inter1 = periodic ([]() {
cout << "Interval 1" << endl;
}, 1000);
// stop periodic
// inter1.stop();
// how many times it has expired
int ti = inter1.ticks();
// is it stopped
bool stoped_i = inter1.stoped();
// start delayed
Timer time1 = delayed ( [] () {
cout << "Timeout 1 " << endl;
}, 10000);
// stop delayed
// time1.stop();
// is it expired
int tt = time1.expired();
// is it stopped
bool stoped_t = time1.stoped();
asynco_default_join();
return 0;
}

View File

@ -1,124 +0,0 @@
#include "../lib/asynco.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
Asynco asynco;
class ClassWithTriggers {
Trigger<int> emitter1;
Trigger<string> emitter2;
public:
ClassWithTriggers(): emitter1(asynco), emitter2(asynco) {}
template<typename... T>
void on(const string& key, function<void(T...)> callback) {
if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) {
emitter1.on(key, callback);
}
else if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, string>) {
emitter2.on(key, callback);
}
}
template <typename... Args>
void tick(const string& key, Args&&... args) {
if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, int>) {
emitter1.tick(key, forward<Args>(args)...);
}
else if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, string>) {
emitter2.tick(key, forward<Args>(args)...);
}
else {
static_assert(sizeof...(Args) == 0, "Unsupported number or types of arguments");
}
}
};
int main() {
asynco.run(2);
/**
* initialization of typed events
*/
Trigger<int, int> ev2int = asynco.trigger<int, int>();
Trigger<int, string> evintString = asynco.trigger<int, string>();
Trigger<> evoid = asynco.trigger<>();
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
});
evintString.on("substract", [](int a, string b) {
cout << "Substract " << a-stoi(b) << endl;
});
evoid.on("void", []() {
cout << "Void emited" << endl;
});
// multiple listeners
string emited2 = "2";
evoid.on("void", [&]() {
cout << "Void emited " << emited2 << endl;
});
sleep(1);
/**
* Emit
*/
ev2int.tick("sum", 5, 8);
sleep(1);
evintString.tick("substract", 3, to_string(2));
sleep(1);
evoid.tick("void");
// Turn off the event listener
evoid.off("void");
evoid.tick("void"); // nothing is happening
class myOwnClass : public Trigger<int> {
public:
myOwnClass() : Trigger(asynco) {};
};
myOwnClass myclass;
Timer t = asynco.delayed( [&] {
myclass.tick("constructed", 1);
}, 200);
myclass.on("constructed", [] (int i) {
cout << "Constructed " << i << endl;
});
ClassWithTriggers mt;
mt.on<int>("int", function<void(int)>([&](int i) {
cout << "Emit int " << i << endl;
}));
mt.on<string>("string", function<void(string)>([&](string s) {
cout << "Emit string " << s << endl;
}));
mt.tick("int", 5);
mt.tick("string", string("Hello world"));
asynco.join();
return 0;
}

View File

@ -1,118 +0,0 @@
#include "../lib/asynco_default.hpp"
using namespace marcelb::asynco;
#include <iostream>
using namespace std;
class ClassWithTriggers {
Trigger<int> emitter1;
Trigger<string> emitter2;
public:
ClassWithTriggers(): emitter1(asynco_default_runtime()), emitter2(asynco_default_runtime()) {}
template<typename... T>
void on(const string& key, function<void(T...)> callback) {
if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, int>) {
emitter1.on(key, callback);
}
else if constexpr (sizeof...(T) == 1 && is_same_v<tuple_element_t<0, tuple<T...>>, string>) {
emitter2.on(key, callback);
}
}
template <typename... Args>
void tick(const string& key, Args&&... args) {
if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, int>) {
emitter1.tick(key, forward<Args>(args)...);
}
else if constexpr (sizeof...(Args) == 1 && is_same_v<tuple_element_t<0, tuple<Args...>>, string>) {
emitter2.tick(key, forward<Args>(args)...);
}
else {
static_assert(sizeof...(Args) == 0, "Unsupported number or types of arguments");
}
}
};
int main() {
asynco_default_run();
/**
* initialization of typed events
*/
Trigger<int, int> ev2int = trigger<int, int>();
Trigger<int, string> evintString = trigger<int, string>();
Trigger<> evoid = trigger<>();
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
});
evintString.on("substract", [](int a, string b) {
cout << "Substract " << a-stoi(b) << endl;
});
evoid.on("void", []() {
cout << "Void emited" << endl;
});
// multiple listeners
string emited2 = "2";
evoid.on("void", [&]() {
cout << "Void emited " << emited2 << endl;
});
sleep(1);
/**
* Emit
*/
ev2int.tick("sum", 5, 8);
sleep(1);
evintString.tick("substract", 3, to_string(2));
sleep(1);
evoid.tick("void");
// Turn off the event listener
evoid.off("void");
evoid.tick("void"); // nothing is happening
class myOwnClass : public Trigger<int> {
public:
myOwnClass() : Trigger(asynco_default_runtime()) {};
};
myOwnClass myclass;
Timer t = delayed( [&] {
myclass.tick("constructed", 1);
}, 200);
myclass.on("constructed", [] (int i) {
cout << "Constructed " << i << endl;
});
ClassWithTriggers mt;
mt.on<int>("int", function<void(int)>([&](int i) {
cout << "Emit int " << i << endl;
}));
mt.on<string>("string", function<void(string)>([&](string s) {
cout << "Emit string " << s << endl;
}));
mt.tick("int", 5);
mt.tick("string", string("Hello world"));
asynco_default_join();
return 0;
}