Compare commits

..

No commits in common. 'dev' and 'dev-own-engine' have entirely different histories.

  1. 83
      README.md
  2. 52
      lib/asynco.hpp
  3. 66
      lib/event.hpp
  4. 7
      lib/filesystem.hpp
  5. 239
      lib/rotor.hpp
  6. 136
      lib/runner.hpp
  7. 223
      lib/timers.hpp
  8. 92
      lib/trigger.hpp
  9. 242
      test/test.cpp

@ -3,12 +3,6 @@
A C++ library for event-driven asynchronous multi-threaded programming.
## Motivation
The original concept was to create an interface capable of asynchronously calling any function. It has since evolved into a library that incorporates a thread pool, each with its own event loop, event-driven programming, and functions inherently designed for asynchronous operation (including periodic and delayed functions).
The asynchronous filesystem is provided solely to guide users on how to wrap any time- or IO-intensive function for asynchronous execution.
## Features
- Object oriented
@ -16,12 +10,11 @@ The asynchronous filesystem is provided solely to guide users on how to wrap any
- Header only
- Asynchronous programming
- Multithread
- Asynchronous timer functions: periodic, delayed (like setInterval and setTimeout from JS)
- Typed events (on, tick, off) (like EventEmitter from JS: on, emit, etc)
- Asynchronous timer functions: interval, timeout
- Typed events (on, emit, off)
- Event loops
- Multiple parallel execution loops
- Asynchronous file IO
- Based on ASIO (Boost Asio)
## Installation
Just download the latest release and unzip it into your project.
@ -29,18 +22,15 @@ Just download the latest release and unzip it into your project.
```c++
#define NUM_OF_RUNNERS 8 // To change the number of threads used by atask, without this it runs according to the number of cores
#include "asynco/lib/asynco.hpp" // atask(), wait()
#include "asynco/lib/triggers.hpp" // trigger (event emitter)
#include "asynco/lib/timers.hpp" // periodic, delayed (like setInterval and setTimeout from JS)
#include "asynco/lib/filesystem.hpp" // for async read and write files
#include "asynco/lib/asynco.hpp" // atask(), wait()
#include "asynco/lib/event.hpp" // event
#include "asynco/lib/rotor.hpp" // interval, timeout
#include "asynco/lib/runner.hpp" // for own loop
#include "asynco/lib/filesystem.hpp" // for async read and write files
using namespace marcelb;
using namespace asynco;
using namespace triggers;
// At the end of the main function, always set
_asynco_engine.run();
return 0;
using namespace events;
```
@ -49,34 +39,21 @@ return 0;
Time asynchronous functions
```c++
// start periodic
periodic inter1 ([]() {
// start interval
interval inter1 ([]() {
cout << "Interval 1" << endl;
}, 1000);
// stop periodic
inter1.stop();
// how many times it has expired
int t = inter1.ticks();
// stop interval
inter1.clear();
// is it stopped
bool stoped = inter1.stoped();
// start delayed
delayed time1 ( [] () {
// start timeout
timeout time1 ( [] () {
cout << "Timeout 1 " << endl;
}, 10000);
// stop delayed
time1.stop();
// is it expired
int t = time1.expired();
// is it stopped
bool stoped = time1.stoped();
// stop timeout
time1.clear();
```
Make functions asynchronous
@ -143,12 +120,12 @@ cout << wait(atask( [] () {
})) << endl;
/**
* Sleep with delayed sleep implement
* Sleep with timeout sleep implement
*/
void sleep_to (int _time) {
promise<void> _promise;
delayed t( [&]() {
timeout t( [&]() {
_promise.set_value();
}, _time);
@ -163,7 +140,7 @@ sleep_to(3000);
void promise_reject (int _time) {
promise<void> _promise;
delayed t( [&]() {
timeout t( [&]() {
try {
// simulate except
throw runtime_error("Error simulation");
@ -189,9 +166,9 @@ Events
* initialization of typed events
*/
trigger<int, int> ev2int;
trigger<int, string> evintString;
trigger<> evoid;
event<int, int> ev2int;
event<int, string> evintString;
event<> evoid;
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
@ -219,32 +196,32 @@ sleep(1);
* Emit
*/
ev2int.tick("sum", 5, 8);
ev2int.emit("sum", 5, 8);
sleep(1);
evintString.tick("substract", 3, to_string(2));
evintString.emit("substract", 3, to_string(2));
sleep(1);
evoid.tick("void");
evoid.emit("void");
// Turn off the event listener
evoid.off("void");
evoid.tick("void"); // nothing is happening
evoid.emit("void"); // nothing is happening
```
Extend own class whit events
```c++
class myOwnClass : public trigger<int> {
class myOwnClass : public event<int> {
public:
myOwnClass() : trigger() {};
myOwnClass() : event() {};
};
myOwnClass myclass;
delayed t( [&] {
myclass.tick("constructed", 1);
timeout t( [&] {
myclass.emit("constructed", 1);
}, 200);
myclass.on("constructed", [] (int i) {

@ -1,67 +1,21 @@
#ifndef _ASYNCO_
#define _ASYNCO_
#include <boost/asio.hpp>
#include <iostream>
#include "runner.hpp"
using namespace std;
namespace marcelb {
namespace asynco {
#define HW_CONCURRENCY_MINIMAL 4
/**
* Internal anonymous class for initializing the ASIO context and thread pool
* !!! It is anonymous to protect against use in the initialization of other objects of the same type !!!
*/
class {
public:
boost::asio::io_context io_context;
void run() {
for (auto& runner : runners) {
runner.join();
}
}
private:
unique_ptr<boost::asio::io_service::work> work { [&] () {
return new boost::asio::io_service::work(io_context);
} ()};
vector<thread> runners { [&] () {
vector<thread> _runs;
unsigned int num_of_runners;
#ifdef NUM_OF_RUNNERS
num_of_runners = NUM_OF_RUNNERS;
#else
num_of_runners = thread::hardware_concurrency();
if (num_of_runners < HW_CONCURRENCY_MINIMAL) {
num_of_runners = HW_CONCURRENCY_MINIMAL;
}
#endif
for (int i=0; i<num_of_runners; i++) {
_runs.push_back(thread ( [this] () {
io_context.run();
}));
}
return _runs;
} ()};
} _asynco_engine;
/**
* Run the function asynchronously
*/
template<class F, class... Args>
auto atask(F&& f, Args&&... args) -> future<typename result_of<F(Args...)>::type> {
using return_type = typename result_of<F(Args...)>::type;
future<return_type> res = _asynco_engine.io_context.post(boost::asio::use_future(bind(forward<F>(f), forward<Args>(args)...)));
future<return_type> res = _asyncon.put_task(bind(forward<F>(f), forward<Args>(args)...));
return res;
}

@ -0,0 +1,66 @@
#ifndef _EVENT_
#define _EVENT_
#include <iostream>
#include <map>
#include <vector>
#include <string>
#include <functional>
#include "runner.hpp"
using namespace std;
namespace marcelb {
namespace asynco {
namespace events {
/**
* Event class, for event-driven programming.
* These events are typed according to the arguments of the callback function
*/
template<typename... T>
class event {
private:
mutex m_eve;
unordered_map<string, vector<function<void(T...)>>> events;
public:
/**
* Defines event by key, and callback function
*/
void on(const string& key, function<void(T...)> callback) {
lock_guard _off(m_eve);
events[key].push_back(callback);
}
/**
* It emits an event and sends a callback function saved according to the key with the passed parameters
*/
template<typename... Args>
void emit(const string& key, Args... args) {
auto it_eve = events.find(key);
if (it_eve != events.end()) {
for (uint i =0; i<it_eve->second.size(); i++) {
auto callback = bind(it_eve->second[i], forward<Args>(args)...);
_asyncon.put_task(callback);
}
}
}
/**
* Remove an event listener from an event
*/
void off(const string& key) {
lock_guard _off(m_eve);
events.erase(key);
}
};
}
}
}
#endif

@ -3,12 +3,13 @@
#include "asynco.hpp"
using namespace marcelb;
using namespace asynco;
#include <fstream>
using namespace std;
#include <iostream>
using namespace std;
using namespace marcelb;
using namespace asynco;
namespace marcelb {
namespace asynco {

@ -0,0 +1,239 @@
#ifndef _ROTOR_
#define _ROTOT_
#include "runner.hpp"
#include "chrono"
#include <memory>
#include "iostream"
using namespace std;
using namespace marcelb;
using namespace asynco;
namespace marcelb {
namespace asynco {
/**
* Get the time in ms from the epoch
*/
int64_t rtime_ms() {
return chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
int64_t rtime_us() {
return chrono::duration_cast<chrono::microseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
namespace {
/**
* Intern class for timer async loop
*/
class timer_core {
public:
mutex hangon;
condition_variable cv;
function<void()> callback;
int64_t time;
int64_t next;
bool repeat;
bool stop;
/**
* Timer constructor, receives a callback function and time
*/
timer_core( function<void()> _callback, int64_t _time, bool _repeat):
callback(_callback), time(_time*1000), repeat(_repeat), stop(false) {
next = rtime_us() + time;
}
/**
* Stop timer
*/
void clear() {
// lock_guard<mutex> hang(hangon);
stop = true;
cv.notify_one();
}
/**
* Destruktor of timer, call stop
*/
~timer_core() {
clear();
}
};
/**
* Event loop for time events
*/
class rotor {
vector<shared_ptr<timer_core>> tcores;
mutex te_m;
bool rotating = true;
int64_t sampling;
condition_variable te_cv;
/**
* Loop method, started by the constructor in a separate runner
* It checks the events on the stack and sends the expired ones to the runner
*/
void loop() {
while (rotating) {
vector<shared_ptr<timer_core>>::iterator next_tc;
shared_ptr<timer_core> next_ptr;
{
unique_lock<mutex> te_l(te_m);
te_cv.wait(te_l, [this]{ return !tcores.empty() || rotating; });
if (!rotating) {
break;
}
next_tc = min_element( tcores.begin(), tcores.end(),
[](shared_ptr<timer_core> a, shared_ptr<timer_core> b ) {
return a->next < b->next;
}
);
next_ptr = *next_tc;
}
unique_lock<mutex> next_l(next_ptr->hangon);
next_ptr->cv.wait_for(next_l, chrono::microseconds(next_ptr->next - rtime_us()), [&next_ptr] () {
return next_ptr->stop;
});
if (next_ptr->stop) {
remove(next_tc);
} else {
_asyncon.put_task(next_ptr->callback);
if (next_ptr->repeat) {
next_ptr->next += next_ptr->time;
}
else {
remove(next_tc);
}
}
}
}
/**
* The method deletes a non-repeating or stopped event from the stack
*/
void remove(vector<shared_ptr<timer_core>>::iterator it) {
lock_guard<mutex> lock(te_m);
tcores.erase(it);
// te_cv.notify_one();
}
public:
/**
* Constructor for the rotor, starts the given loop by occupying one runner
*/
rotor() {
_asyncon.put_task( [&] () {
loop();
});
};
/**
* Adds a time event to the stack
*/
void insert(shared_ptr<timer_core> tcore) {
lock_guard<mutex> lock(te_m);
tcores.push_back(tcore);
te_cv.notify_one();
};
/**
* Returns the number of active events
*/
int active() {
return tcores.size();
}
/**
* Stops all active events and stops the rotor
*/
~rotor() {
for (int i=0; i<tcores.size(); i++) {
tcores[i]->clear();
}
rotating = false;
}
};
}
/**
* It is intended that there is only one global declaration
*/
static rotor _rotor;
/**
* Core class for pure async timer functions
*/
class _timer_intern {
shared_ptr<timer_core> tcore;
public:
_timer_intern(function<void()> _callback, int64_t _time, bool repeat) {
tcore = make_shared<timer_core>(_callback, _time, repeat);
_rotor.insert(tcore);
}
/**
* Stop interval
*/
void clear() {
tcore->clear();
}
};
/**
* Class interval for periodic execution of the callback in time in ms
*/
class interval : public _timer_intern {
public:
/**
* The constructor receives a callback function and an interval time
*/
interval( function<void()> _callback, int64_t _time):
_timer_intern(_callback, _time, true) {
}
};
/**
* Class interval for delayed callback execution in ms
*/
class timeout : public _timer_intern {
public:
/**
* The constructor receives a callback function and a delay time
*/
timeout( function<void()> _callback, int64_t delay):
_timer_intern(_callback, delay, false) {
}
};
}
}
#endif

@ -0,0 +1,136 @@
#ifndef _RUNNER_
#define _RUNNER_
#include <thread>
#include <vector>
#include <queue>
#include <functional>
#include <mutex>
#include <condition_variable>
#include <future>
using namespace std;
namespace marcelb {
namespace asynco {
#define HW_CONCURRENCY_MINIMAL 4
/**
* The runner class implements multithread, task stack and event loop for asynchronous execution of tasks
*/
class runner {
private:
vector<thread> runners;
queue<function<void()>> tasks;
mutex q_io;
condition_variable cv;
bool stop;
public:
/**
* The constructor starts as many threads as the system has cores,
* and runs an event loop inside each one.
* Each event loop waits for tasks from the stack and executes them.
*/
runner(unsigned int _num_of_runners = 0) : stop(false) {
unsigned int num_of_runners = _num_of_runners;
if (num_of_runners == 0) {
#ifdef NUM_OF_RUNNERS
num_of_runners = NUM_OF_RUNNERS;
#else
num_of_runners = thread::hardware_concurrency();
if (num_of_runners < HW_CONCURRENCY_MINIMAL) {
num_of_runners = HW_CONCURRENCY_MINIMAL;
}
#endif
}
for (size_t i = 0; i < num_of_runners; ++i) {
runners.emplace_back( thread([&] {
while (!stop) {
function<void()> task;
{
unique_lock<mutex> lock(q_io);
cv.wait(lock, [this] { return stop || !tasks.empty(); });
// if (stop && tasks.empty())
if (stop)
return;
task = move(tasks.front());
tasks.pop();
}
task();
}
}));
}
}
/**
* With the method, we send the callback function and its arguments to the task stack
*/
template<class F, class... Args>
auto put_task(F&& f, Args&&... args)
-> future<typename result_of<F(Args...)>::type> {
using return_type = typename result_of<F(Args...)>::type;
auto task = make_shared<packaged_task<return_type()>>(bind(forward<F>(f), forward<Args>(args)...));
future<return_type> res = task->get_future();
{
unique_lock<mutex> lock(q_io);
if (stop) {
throw runtime_error("Pool is stoped!");
}
tasks.emplace([task]() { (*task)(); });
}
cv.notify_one();
return res;
}
/**
* Returns the number of tasks the runner has to perform
*/
unsigned int count_tasks() {
return tasks.size();
}
/**
* Returns the number of threads used by the runner
*/
unsigned int count_threads() {
return runners.size();
}
/**
* The destructor stops all loops and stops all threads
*/
~runner() {
{
unique_lock<mutex> lock(q_io);
stop = true;
}
cv.notify_all();
for (thread& runner : runners) {
runner.join();
}
runners.clear();
}
};
/**
* Internal global library variable
*/
static runner _asyncon;
}
}
#endif

@ -1,223 +0,0 @@
#ifndef _TIMERS_
#define _TIMERS_
#include "asynco.hpp"
#include <chrono>
using namespace std;
using namespace marcelb;
using namespace asynco;
namespace marcelb {
namespace asynco {
/**
* Get the time in ms from the epoch
*/
int64_t rtime_ms() {
return chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
/**
* Get the time in us from the epoch
*/
int64_t rtime_us() {
return chrono::duration_cast<chrono::microseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
/**
* Core timer class for construct time async functions
*/
class timer {
boost::asio::steady_timer st;
bool _stop = false;
bool repeate;
function<void()> callback;
uint64_t time;
uint64_t _ticks = 0;
/**
* A method to assign a callback wrapper and a reinitialization algorithm
*/
void init() {
st.async_wait( [this] (const boost::system::error_code&) {
if (!_stop) {
callback();
if (repeate) {
st = boost::asio::steady_timer(_asynco_engine.io_context, boost::asio::chrono::milliseconds(time));
init();
}
_ticks++;
}
});
}
public:
/**
* The constructor creates the steady_timer and accompanying variables and runs a method to initialize the timer
*/
timer (function<void()> _callback, uint64_t _time, bool _repeate) :
st(_asynco_engine.io_context, boost::asio::chrono::milliseconds(_time)),
_stop(false),
repeate(_repeate),
callback(_callback),
time(_time) {
init();
}
/**
* Stop timer
* The stop flag is set and timer remove it from the queue
*/
void stop() {
_stop = true;
st.cancel();
}
/**
* Run callback now
* Forces the callback function to run independently of the timer
*/
void now() {
st.cancel();
}
/**
* Get the number of times the timer callback was runned
*/
uint64_t ticks() {
return _ticks;
}
/**
* The logic status of the timer stop state
*/
bool stoped() {
return _stop;
}
/**
* The destructor stops the timer
*/
~timer() {
stop();
}
};
/**
* Class periodic for periodic execution of the callback in time in ms
*/
class periodic {
shared_ptr<timer> _timer;
public:
/**
* Constructor initializes a shared pointer of type timer
*/
periodic(function<void()> callback, uint64_t time) :
_timer(make_shared<timer> (callback, time, true)) {
}
/**
* Stop periodic
* The stop flag is set and periodic remove it from the queue
*/
void stop() {
_timer->stop();
}
/**
* Run callback now
* Forces the callback function to run independently of the periodic
*/
void now() {
_timer->now();
}
/**
* Get the number of times the periodic callback was runned
*/
uint64_t ticks() {
return _timer->ticks();
}
/**
* The logic status of the periodic stop state
*/
bool stoped() {
return _timer->stoped();
}
/**
* The destructor stops the periodic
*/
~periodic() {
stop();
}
};
/**
* Class delayed for delayed callback execution in ms
*/
class delayed {
shared_ptr<timer> _timer;
public:
/**
* Constructor initializes a shared pointer of type timer
*/
delayed(function<void()> callback, uint64_t time) :
_timer(make_shared<timer> (callback, time, false)) {
}
/**
* Stop delayed
* The stop flag is set and delayed remove it from the queue
*/
void stop() {
_timer->stop();
}
/**
* Run callback now
* Forces the callback function to run independently of the delayed
*/
void now() {
_timer->now();
}
/**
* Get is the delayed callback runned
*/
bool expired() {
return bool(_timer->ticks());
}
/**
* The logic status of the delayed stop state
*/
bool stoped() {
return _timer->stoped();
}
/**
* The destructor stops the delayed
*/
~delayed() {
stop();
}
};
}
}
#endif

@ -1,92 +0,0 @@
#ifndef _TRIGGER_
#define _TRIGGER_
#include <map>
#include <vector>
#include <string>
#include <functional>
using namespace std;
#include "asynco.hpp"
namespace marcelb {
namespace asynco {
namespace triggers {
/**
* trigger class, for event-driven programming.
* These events are typed according to the arguments of the callback function
*/
template<typename... T>
class trigger {
private:
mutex m_eve;
unordered_map<string, vector<function<void(T...)>>> triggers;
public:
/**
* Defines event by key, and callback function
*/
void on(const string& key, function<void(T...)> callback) {
lock_guard _off(m_eve);
triggers[key].push_back(callback);
}
/**
* It emits an event and sends a callback function saved according to the key with the passed parameters
*/
template<typename... Args>
void tick(const string& key, Args... args) {
auto it_eve = triggers.find(key);
if (it_eve != triggers.end()) {
for (uint i =0; i<it_eve->second.size(); i++) {
auto callback = bind(it_eve->second[i], forward<Args>(args)...);
atask(callback);
}
}
}
/**
* Remove an trigger listener from an event
*/
void off(const string& key) {
lock_guard _off(m_eve);
triggers.erase(key);
}
/**
* Remove all trigger listener
*/
void off() {
lock_guard _off(m_eve);
triggers.clear();
}
/**
* Get num of listeners by an trigger key
*/
unsigned int listeners(const string& key) {
return triggers[key].size();
}
/**
* Get num of all listeners
*/
unsigned int listeners() {
unsigned int listeners = 0;
for (auto& ev : triggers) {
listeners += ev.second.size();
}
return listeners;
}
};
}
}
}
#endif

@ -1,24 +1,22 @@
// // #define NUM_OF_RUNNERS 2
// #define NUM_OF_RUNNERS 2
#include "../lib/asynco.hpp"
#include "../lib/trigger.hpp"
#include "../lib/event.hpp"
#include "../lib/rotor.hpp"
#include "../lib/filesystem.hpp"
#include "../lib/timers.hpp"
using namespace marcelb::asynco;
using namespace triggers;
#include <iostream>
#include <unistd.h>
#include <thread>
using namespace std;
using namespace marcelb::asynco;
using namespace events;
using namespace asynco;
using namespace this_thread;
void sleep_to (int _time) {
promise<void> _promise;
delayed t( [&]() {
timeout t( [&]() {
_promise.set_value();
}, _time);
@ -27,7 +25,7 @@ void sleep_to (int _time) {
void promise_reject (int _time) {
promise<void> _promise;
delayed t( [&]() {
timeout t( [&]() {
try {
// simulate except
throw runtime_error("Error simulation");
@ -53,9 +51,9 @@ class clm {
// ------------------ EXTEND OWN CLASS WITH EVENTS -------------------
class myOwnClass : public trigger<int> {
class myOwnClass : public event<int> {
public:
myOwnClass() : trigger() {};
myOwnClass() : event() {};
};
@ -65,65 +63,77 @@ int main () {
// --------------- TIME ASYNCHRONOUS FUNCTIONS --------------
// /**
// * Init periodic and delayed; clear periodic and delayed
// */
/**
* Init interval and timeout; clear interval and timeout
*/
// periodic inter1 ([&]() {
// cout << "periodic prvi " << rtime_ms() - start << endl;
// }, 1000);
vector<interval> intervals;
// periodic inter2 ([&]() {
// cout << "periodic drugi " << rtime_ms() - start << endl;
// }, 2000);
for(int i=0; i<10; i++) {
intervals.push_back(interval( [i, &start]() {
cout << "interval " << i << " end: " << rtime_ms() - start << endl;
}, (i%5 +1)*1000));
}
// periodic inter3 ([&]() {
// cout << "periodic treći " << rtime_ms() - start << endl;
// }, 1000);
// interval( [&] () {
// cout << "interval 1: " << rtime_ms() - start << endl;
// }, 50);
// interval( [&] () {
// cout << "interval 1: " << rtime_ms() - start << endl;
// }, 100);
// interval( [&] () {
// cout << "interval 2: " << rtime_ms() - start << endl;
// }, 200);
// periodic inter4 ([&]() {
// // cout << "periodic cetvrti " << rtime_ms() - start << endl;
// cout << "Ticks " << inter3.ticks() << endl;
// }, 500);
// interval( [&] () {
// cout << "interval 3: " << rtime_ms() - start << endl;
// }, 300);
// periodic inter5 ([&]() {
// cout << "periodic peti " << rtime_ms() - start << endl;
// interval( [&] () {
// cout << "interval 4: " << rtime_ms() - start << endl;
// }, 400);
// interval inter1 ([&]() {
// cout << "interval prvi " << rtime_ms() - start << endl;
// }, 1000);
// interval inter2 ([&]() {
// cout << "interval drugi " << rtime_ms() - start << endl;
// }, 2000);
// periodic inter6 ([&]() {
// cout << "periodic sesti " << rtime_ms() - start << endl;
// interval inter3 ([&]() {
// cout << "interval treći " << rtime_ms() - start << endl;
// }, 3000);
// delayed time1 ( [&] () {
// cout << "Close periodic 1 i 2 " << rtime_ms() - start << endl;
// inter1.stop();
// cout << "inter1.stop " << endl;
// inter2.stop();
// cout << "inter2.stop " << endl;
// }, 8000);
// interval inter4 ([&]() {
// cout << "interval cetvrti " << rtime_ms() - start << endl;
// }, 1000);
// delayed time2 ([&] () {
// cout << "Close periodic 3 " << rtime_ms() - start << endl;
// inter3.stop();
// cout << "Stoped " << inter3.stoped() << endl;
// // time1.stop();
// }, 5000);
// interval inter5 ([&]() {
// cout << "interval peti " << rtime_ms() - start << endl;
// }, 2000);
// interval inter6 ([&]() {
// cout << "interval sesti " << rtime_ms() - start << endl;
// }, 3000);
// if (time2.expired()) {
// cout << "isteko " << endl;
// } else {
// cout << "nije isteko " << endl;
// }
// timeout time1 ( [&] () {
// cout << "Close interval 1 i 2 " << rtime_ms() - start << endl;
// // inter1.clear();
// // cout << "inter1.stop " << inter1.stop << endl;
// // inter2.clear();
// // cout << "inter2.stop " << inter2.stop << endl;
// }, 5000);
// // sleep(6);
// if (time2.expired()) {
// cout << "isteko " << endl;
// } else {
// cout << "nije isteko " << endl;
// }
// timeout time2 ([&] () {
// cout << "Close interval 3 " << rtime_ms() - start << endl;
// // inter3.clear();
// time1.clear();
// }, 2000);
// // // ------------------------ MAKE FUNCTIONS ASYNCHRONOUS -------------------------
@ -185,7 +195,7 @@ int main () {
// })) << endl;
// /**
// * Sleep with delayed sleep implement
// * Sleep with timeout sleep implement
// */
// sleep_to(3000);
@ -216,74 +226,68 @@ int main () {
// });
// });
// --------------- EVENTS -------------------
// // --------------- EVENTS -------------------
/**
* initialization of typed events
*/
// /**
// * initialization of typed events
// */
trigger<int, int> ev2int;
trigger<int, string> evintString;
trigger<> evoid;
// event<int, int> ev2int;
// event<int, string> evintString;
// event<> evoid;
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
});
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum " << a+b << endl;
// });
ev2int.on("sum", [](int a, int b) {
cout << "Sum done" << endl;
});
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum done" << endl;
// });
evintString.on("substract", [](int a, string b) {
cout << "Substract " << a-stoi(b) << endl;
});
// evintString.on("substract", [](int a, string b) {
// cout << "Substract " << a-stoi(b) << endl;
// });
evoid.on("void", []() {
cout << "Void emited" << endl;
});
// evoid.on("void", []() {
// cout << "Void emited" << endl;
// });
string emited2 = "2";
// string emited2 = "2";
evoid.on("void", [&]() {
cout << "Void emited " << emited2 << endl;
});
// evoid.on("void", [&]() {
// cout << "Void emited " << emited2 << endl;
// });
evoid.tick("void");
sleep(1);
// evoid.emit("void");
// sleep(1);
/**
* Emit
*/
// /**
// * Emit
// */
ev2int.tick("sum", 5, 8);
// ev2int.emit("sum", 5, 8);
sleep(1);
evintString.tick("substract", 3, to_string(2));
// sleep(1);
// evintString.emit("substract", 3, to_string(2));
sleep(1);
evoid.off("void");
evoid.tick("void");
// sleep(1);
// evoid.off("void");
// evoid.emit("void");
// /**
// * Own class
// */
cout << "Ukupno 2 int " << ev2int.listeners() << endl;
cout << "Ukupno evintString " << evintString.listeners() << endl;
cout << "Ukupno evoid " << evoid.listeners() << endl;
cout << "Ukupno 2 int " << ev2int.listeners("sum") << endl;
/**
* Own class
*/
myOwnClass myclass;
// myOwnClass myclass;
delayed t( [&] {
myclass.tick("constructed", 1);
}, 200);
// timeout t( [&] {
// myclass.emit("constructed", 1);
// }, 200);
myclass.on("constructed", [] (int i) {
cout << "Constructed " << i << endl;
});
// myclass.on("constructed", [] (int i) {
// cout << "Constructed " << i << endl;
// });
@ -297,26 +301,8 @@ int main () {
// cout << err.what() << endl;
// }
// string data_;
// auto start_read = rtime_us();
// fs::read("test1.txt", [&data_, &start_read] (string data, exception* error) {
// if (error) {
// cout << "Error " << error->what() << endl;
// } else {
// // cout << "Data " << endl << data << endl;
// // data_ = data;
// // cout << "Data_" << data_ << endl;
// cout << "read " << rtime_us() - start_read << endl;
// }
// });
// // ----------------------------------------------------------------------------------------------------
cout << "Run" << endl;
_asynco_engine.run();
cout << "Sleep" << endl;
sleep(100000); // only for testing
return 0;
}

Loading…
Cancel
Save