Compare commits

..

No commits in common. 'dev' and 'trigger' have entirely different histories.
dev ... trigger

  1. 3
      .gitignore
  2. 4
      .vscode/settings.json
  3. 106
      README.md
  4. 76
      lib/asynco.hpp
  5. 19
      lib/define.hpp
  6. 71
      lib/engine.hpp
  7. 8
      lib/filesystem.hpp
  8. 124
      lib/timers.hpp
  9. 8
      lib/trigger.hpp
  10. 7
      src/engine.cpp
  11. 145
      src/timers.cpp
  12. 1
      test/compile.sh
  13. 236
      test/test.cpp

3
.gitignore vendored

@ -1,3 +1,2 @@
test/test
test/*.txt
example
test/*.txt

@ -69,8 +69,6 @@
"cinttypes": "cpp",
"typeindex": "cpp",
"typeinfo": "cpp",
"variant": "cpp",
"coroutine": "cpp",
"source_location": "cpp"
"variant": "cpp"
}
}

@ -27,9 +27,9 @@ The asynchronous filesystem is provided solely to guide users on how to wrap any
Just download the latest release and unzip it into your project.
```c++
#define NUM_OF_RUNNERS 8 // To change the number of threads used by asynco, without this it runs according to the number of cores
#define NUM_OF_RUNNERS 8 // To change the number of threads used by atask, without this it runs according to the number of cores
#include "asynco/lib/asynco.hpp" // async_ (), await_()
#include "asynco/lib/asynco.hpp" // atask(), wait()
#include "asynco/lib/triggers.hpp" // trigger (event emitter)
#include "asynco/lib/timers.hpp" // periodic, delayed (like setInterval and setTimeout from JS)
#include "asynco/lib/filesystem.hpp" // for async read and write files
@ -77,28 +77,6 @@ int t = time1.expired();
// is it stopped
bool stoped = time1.stoped();
// If you don't want to save in a variable, but you want to start a timer, use these functions
// And you can also save them, they are only of the shared pointer type
auto d = Delayed( [](){
cout << "Delayed" << endl;
}, 2000);
auto p = Periodic( [](){
cout << "Periodic" << endl;
}, 700);
Periodic( [&] (){
cout << "Delayed expire " << d->expired() << endl;
cout << "Periodic ticks " << p->ticks() << endl;
cout << "Delayed stoped " << d->stoped() << endl;
cout << "Periodic stoped " << p->stoped() << endl;
}, 1000);
Delayed( [&](){
p->stop();
}, 10000);
```
Make functions asynchronous
@ -107,9 +85,9 @@ Make functions asynchronous
* Run an lambda function asynchronously
*/
async_ ( []() {
atask( []() {
sleep_for(2s); // only for simulating long duration function
cout << "nonsync " << endl;
cout << "atask" << endl;
return 5;
});
@ -122,7 +100,7 @@ void notLambdaFunction() {
cout << "Call to not lambda function" << endl;
}
async_ (notLambdaFunction);
atask (notLambdaFunction);
/**
* Run class method
@ -136,88 +114,34 @@ class clm {
};
clm classes;
async_ ( [&classes] () {
atask( [&classes] () {
classes.classMethode();
});
/**
* await_ after runned as async
* Wait after runned as async
*/
auto a = async_ ( []() {
auto a = atask( []() {
sleep_for(2s); // only for simulating long duration function
cout << "nonsync " << endl;
cout << "atask" << endl;
return 5;
});
cout << await_(a) << endl;
cout << wait(a) << endl;
/**
* await_ async function call and use i cout
* Wait async function call and use i cout
*/
cout << await_(async_ ( [] () {
cout << wait(atask( [] () {
sleep_for(chrono::seconds(1)); // only for simulating long duration function
cout << "await_ end" << endl;
cout << "wait end" << endl;
return 4;
})) << endl;
/**
* Await all
**/
auto a = async_ ( []() {
cout << "A" << endl;
return 3;
});
auto b = async_ ( []() {
cout << "B" << endl;
throw runtime_error("Test exception");
return;
});
auto c = async_ ( []() {
cout << "C" << endl;
return "Hello";
});
int a_;
string c_;
auto await_all = [&] () {
a_ = await_(a);
await_(b);
c_ = await_(c);
};
try {
await_all();
cout << "a_ " << a_ << " c_ " << c_ << endl;
} catch (const exception& exc) {
cout << exc.what() << endl;
}
// // same type
vector<future<void>> fut_vec;
for (int i=0; i<5; i++) {
fut_vec.push_back(
async_ ( [i]() {
cout << "Async_ " << i << endl;
})
);
}
auto await_all = [&] () {
for (int i=0; i<fut_vec.size(); i++) {
await_ (fut_vec[i]);
}
};
/**
* Sleep with delayed sleep implement
*/
@ -355,7 +279,7 @@ fs::write("test1.txt", "Hello world", [] (exception* error) {
auto future_data = fs::read("test.txt");
try {
string data = await_(future_data);
string data = wait(future_data);
} catch (exception& err) {
cout << err.what() << endl;
}
@ -363,7 +287,7 @@ try {
auto future_status = fs::write("test.txt", "Hello world");
try {
await_(future_status);
wait(future_status);
} catch (exception& err) {
cout << err.what() << endl;
}

@ -1,7 +1,7 @@
#ifndef _ASYNCO_
#define _ASYNCO_
#include "engine.hpp"
#include <boost/asio.hpp>
#include <iostream>
using namespace std;
@ -9,11 +9,57 @@ using namespace std;
namespace marcelb {
namespace asynco {
#define HW_CONCURRENCY_MINIMAL 4
/**
* Internal anonymous class for initializing the ASIO context and thread pool
* !!! It is anonymous to protect against use in the initialization of other objects of the same type !!!
*/
class {
public:
boost::asio::io_context io_context;
void run() {
for (auto& runner : runners) {
runner.join();
}
}
private:
unique_ptr<boost::asio::io_service::work> work { [&] () {
return new boost::asio::io_service::work(io_context);
} ()};
vector<thread> runners { [&] () {
vector<thread> _runs;
unsigned int num_of_runners;
#ifdef NUM_OF_RUNNERS
num_of_runners = NUM_OF_RUNNERS;
#else
num_of_runners = thread::hardware_concurrency();
if (num_of_runners < HW_CONCURRENCY_MINIMAL) {
num_of_runners = HW_CONCURRENCY_MINIMAL;
}
#endif
for (int i=0; i<num_of_runners; i++) {
_runs.push_back(thread ( [this] () {
io_context.run();
}));
}
return _runs;
} ()};
} _asynco_engine;
/**
* Run the function asynchronously
*/
template<class F, class... Args>
auto async_(F&& f, Args&&... args) -> future<typename result_of<F(Args...)>::type> {
auto atask(F&& f, Args&&... args) -> future<typename result_of<F(Args...)>::type> {
using return_type = typename result_of<F(Args...)>::type;
future<return_type> res = _asynco_engine.io_context.post(boost::asio::use_future(bind(forward<F>(f), forward<Args>(args)...)));
return res;
@ -23,7 +69,7 @@ auto async_(F&& f, Args&&... args) -> future<typename result_of<F(Args...)>::typ
* Block until the asynchronous call completes
*/
template<typename T>
T await_(future<T>& r) {
T wait(future<T>& r) {
return r.get();
}
@ -31,29 +77,7 @@ T await_(future<T>& r) {
* Block until the asynchronous call completes
*/
template<typename T>
T await_(future<T>&& r) {
return move(r).get();
}
/**
* Block until the asynchronous call completes or time expired
*/
template<typename T>
T await_(future<T>& r, uint64_t time) {
if (r.wait_for(chrono::milliseconds(time)) == std::future_status::timeout) {
throw runtime_error("Asynchronous execution timed out");
}
return r.get();
}
/**
* Block until the asynchronous call completes or time expired
*/
template<typename T>
T await_(future<T>&& r, uint64_t time) {
if (r.wait_for(chrono::milliseconds(time)) == std::future_status::timeout) {
throw runtime_error("Asynchronous execution timed out");
}
T wait(future<T>&& r) {
return move(r).get();
}

@ -1,19 +0,0 @@
#ifndef _ASYNCO_DEFINE_
#define _ASYNCO_DEFINE_
namespace marcelb {
namespace asynco {
/**
* Alternative names of functions - mostly for the sake of more beautiful coloring of the code
*/
#define async_ marcelb::asynco::async_
#define await_ marcelb::asynco::await_
}
}
#endif

@ -1,71 +0,0 @@
#ifndef _ASYNCO_ENGINE_
#define _ASYNCO_ENGINE_
#include <vector>
#include <memory>
using namespace std;
#include <boost/asio.hpp>
namespace marcelb {
namespace asynco {
#define HW_CONCURRENCY_MINIMAL 4
/**
* Internal anonymous class for initializing the ASIO context and thread pool
* !!! It is anonymous to protect against use in the initialization of other objects of the same type !!!
*/
class Engine {
public:
boost::asio::io_context io_context;
void run() {
for (auto& runner : runners) {
runner.join();
}
}
private:
unique_ptr<boost::asio::io_service::work> work { [&] () {
return new boost::asio::io_service::work(io_context);
} ()};
vector<thread> runners { [&] () {
vector<thread> _runs;
unsigned int num_of_runners;
#ifdef NUM_OF_RUNNERS
num_of_runners = NUM_OF_RUNNERS;
#else
num_of_runners = thread::hardware_concurrency();
if (num_of_runners < HW_CONCURRENCY_MINIMAL) {
num_of_runners = HW_CONCURRENCY_MINIMAL;
}
#endif
for (int i=0; i<num_of_runners; i++) {
_runs.push_back(thread ( [this] () {
io_context.run();
}));
}
return _runs;
} ()};
};
extern Engine _asynco_engine;
}
}
#endif

@ -19,7 +19,7 @@ namespace fs {
*/
template<typename Callback>
void read(string path, Callback&& callback) {
asynco::async_( [&path, callback] () {
atask( [&path, callback] () {
string content;
try {
string line;
@ -48,7 +48,7 @@ void read(string path, Callback&& callback) {
* Asynchronous file reading
*/
future<string> read(string path) {
return asynco::async_( [&path] () {
return atask( [&path] () {
string content;
string line;
ifstream file (path);
@ -72,7 +72,7 @@ future<string> read(string path) {
*/
template<typename Callback>
void write(string path, string content, Callback&& callback) {
asynco::async_( [&path, &content, callback] () {
atask( [&path, &content, callback] () {
try {
ofstream file (path);
if (file.is_open()) {
@ -95,7 +95,7 @@ void write(string path, string content, Callback&& callback) {
* Asynchronous file writing with callback after write complete
*/
future<void> write(string path, string content) {
return asynco::async_( [&path, &content] () {
return atask( [&path, &content] () {
ofstream file (path);
if (file.is_open()) {
file << content;

@ -1,10 +1,12 @@
#ifndef _ASYNCO_TIMERS_
#define _ASYNCO_TIMERS_
#ifndef _TIMERS_
#define _TIMERS_
#include "asynco.hpp"
#include <chrono>
using namespace std;
#include "asynco.hpp"
using namespace std;
using namespace marcelb;
using namespace asynco;
namespace marcelb {
namespace asynco {
@ -13,13 +15,21 @@ namespace asynco {
* Get the time in ms from the epoch
*/
int64_t rtime_ms();
int64_t rtime_ms() {
return chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
/**
* Get the time in us from the epoch
*/
int64_t rtime_us();
int64_t rtime_us() {
return chrono::duration_cast<chrono::microseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
/**
* Core timer class for construct time async functions
@ -35,40 +45,71 @@ class timer {
/**
* A method to assign a callback wrapper and a reinitialization algorithm
*/
void init();
void init() {
st.async_wait( [this] (const boost::system::error_code&) {
if (!_stop) {
callback();
if (repeate) {
st = boost::asio::steady_timer(_asynco_engine.io_context, boost::asio::chrono::milliseconds(time));
init();
}
_ticks++;
}
});
}
public:
/**
* The constructor creates the steady_timer and accompanying variables and runs a method to initialize the timer
*/
timer (function<void()> _callback, uint64_t _time, bool _repeate);
timer (function<void()> _callback, uint64_t _time, bool _repeate) :
st(_asynco_engine.io_context, boost::asio::chrono::milliseconds(_time)),
_stop(false),
repeate(_repeate),
callback(_callback),
time(_time) {
init();
}
/**
* Stop timer
* The stop flag is set and timer remove it from the queue
*/
void stop();
void stop() {
_stop = true;
st.cancel();
}
/**
* Run callback now
* Forces the callback function to run independently of the timer
*/
void now();
void now() {
st.cancel();
}
/**
* Get the number of times the timer callback was runned
*/
uint64_t ticks();
uint64_t ticks() {
return _ticks;
}
/**
* The logic status of the timer stop state
*/
bool stoped();
bool stoped() {
return _stop;
}
/**
* The destructor stops the timer
*/
~timer();
~timer() {
stop();
}
};
/**
@ -78,37 +119,49 @@ class periodic {
shared_ptr<timer> _timer;
public:
/**
* Constructor initializes a shared pointer of type timer
*/
periodic(function<void()> callback, uint64_t time);
periodic(function<void()> callback, uint64_t time) :
_timer(make_shared<timer> (callback, time, true)) {
}
/**
* Stop periodic
* The stop flag is set and periodic remove it from the queue
*/
void stop();
void stop() {
_timer->stop();
}
/**
* Run callback now
* Forces the callback function to run independently of the periodic
*/
void now();
void now() {
_timer->now();
}
/**
* Get the number of times the periodic callback was runned
*/
uint64_t ticks();
uint64_t ticks() {
return _timer->ticks();
}
/**
* The logic status of the periodic stop state
*/
bool stoped();
bool stoped() {
return _timer->stoped();
}
/**
* The destructor stops the periodic
*/
~periodic();
~periodic() {
stop();
}
};
/**
@ -118,43 +171,52 @@ class delayed {
shared_ptr<timer> _timer;
public:
/**
* Constructor initializes a shared pointer of type timer
*/
delayed(function<void()> callback, uint64_t time);
delayed(function<void()> callback, uint64_t time) :
_timer(make_shared<timer> (callback, time, false)) {
}
/**
* Stop delayed
* The stop flag is set and delayed remove it from the queue
*/
void stop();
void stop() {
_timer->stop();
}
/**
* Run callback now
* Forces the callback function to run independently of the delayed
*/
void now();
void now() {
_timer->now();
}
/**
* Get is the delayed callback runned
*/
bool expired();
bool expired() {
return bool(_timer->ticks());
}
/**
* The logic status of the delayed stop state
*/
bool stoped();
bool stoped() {
return _timer->stoped();
}
/**
* The destructor stops the delayed
*/
~delayed();
~delayed() {
stop();
}
};
shared_ptr<periodic> Periodic(function<void()> callback, uint64_t time);
shared_ptr<delayed> Delayed(function<void()> callback, uint64_t time);
}
}

@ -1,5 +1,5 @@
#ifndef _ASYNCO_TRIGGER_
#define _ASYNCO_TRIGGER_
#ifndef _TRIGGER_
#define _TRIGGER_
#include <map>
#include <vector>
@ -8,7 +8,7 @@
using namespace std;
#include "engine.hpp"
#include "asynco.hpp"
namespace marcelb {
namespace asynco {
namespace triggers {
@ -42,7 +42,7 @@ class trigger {
if (it_eve != triggers.end()) {
for (uint i =0; i<it_eve->second.size(); i++) {
auto callback = bind(it_eve->second[i], forward<Args>(args)...);
asynco::async_(callback);
atask(callback);
}
}
}

@ -1,7 +0,0 @@
#include "../lib/engine.hpp"
namespace marcelb::asynco {
Engine _asynco_engine;
};

@ -1,145 +0,0 @@
#include "../lib/timers.hpp"
namespace marcelb::asynco {
int64_t rtime_ms() {
return chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
int64_t rtime_us() {
return chrono::duration_cast<chrono::microseconds>(chrono::system_clock::now()
.time_since_epoch())
.count();
}
void timer::init() {
st.async_wait( [this] (const boost::system::error_code&) {
if (!_stop) {
callback();
if (repeate) {
st = boost::asio::steady_timer(_asynco_engine.io_context, boost::asio::chrono::milliseconds(time));
init();
}
_ticks++;
}
});
}
timer::timer (function<void()> _callback, uint64_t _time, bool _repeate) :
st(_asynco_engine.io_context, boost::asio::chrono::milliseconds(_time)),
_stop(false),
repeate(_repeate),
callback(_callback),
time(_time) {
init();
}
void timer::stop() {
_stop = true;
st.cancel();
}
void timer::now() {
st.cancel();
}
uint64_t timer::ticks() {
return _ticks;
}
bool timer::stoped() {
return _stop;
}
timer::~timer() {
stop();
}
periodic::periodic(function<void()> callback, uint64_t time) :
_timer(make_shared<timer> (callback, time, true)) {
}
void periodic::stop() {
_timer->stop();
}
void periodic::now() {
_timer->now();
}
uint64_t periodic::ticks() {
return _timer->ticks();
}
bool periodic::stoped() {
return _timer->stoped();
}
periodic::~periodic() {
stop();
}
delayed::delayed(function<void()> callback, uint64_t time) :
_timer(make_shared<timer> (callback, time, false)) {
}
void delayed::stop() {
_timer->stop();
}
void delayed::now() {
_timer->now();
}
bool delayed::expired() {
return bool(_timer->ticks());
}
bool delayed::stoped() {
return _timer->stoped();
}
delayed::~delayed() {
stop();
}
mutex p_io, d_io;
vector<shared_ptr<periodic>> periodic_calls_container;
vector<shared_ptr<delayed>> delayed_calls_container;
shared_ptr<periodic> Periodic(function<void()> callback, uint64_t time) {
shared_ptr<periodic> periodic_ptr(make_shared<periodic>(callback, time));
async_ ( [&, periodic_ptr](){
lock_guard<mutex> lock(p_io);
periodic_calls_container.push_back(periodic_ptr);
for (uint32_t i=0; i<periodic_calls_container.size(); i++) {
if (periodic_calls_container[i]->stoped()) {
periodic_calls_container.erase(periodic_calls_container.begin()+i);
i--;
}
}
});
return periodic_ptr;
}
shared_ptr<delayed> Delayed(function<void()> callback, uint64_t time) {
shared_ptr<delayed> delayed_ptr(make_shared<delayed>(callback, time));
async_ ( [&, delayed_ptr](){
lock_guard<mutex> lock(p_io);
delayed_calls_container.push_back(delayed_ptr);
for (uint32_t i=0; i<delayed_calls_container.size(); i++) {
if (delayed_calls_container[i]->stoped() || delayed_calls_container[i]->expired()) {
delayed_calls_container.erase(delayed_calls_container.begin()+i);
i--;
}
}
});
return delayed_ptr;
}
};

@ -1 +0,0 @@
g++ test.cpp ../src/* -o test

@ -4,7 +4,6 @@
#include "../lib/trigger.hpp"
#include "../lib/filesystem.hpp"
#include "../lib/timers.hpp"
#include "../lib/define.hpp"
using namespace marcelb::asynco;
using namespace triggers;
@ -12,14 +11,11 @@ using namespace triggers;
#include <iostream>
#include <unistd.h>
#include <thread>
#include <future>
#include <vector>
using namespace std;
using namespace this_thread;
void sleep_to (int _time) {
promise<void> _promise;
delayed t( [&]() {
@ -69,9 +65,9 @@ int main () {
// --------------- TIME ASYNCHRONOUS FUNCTIONS --------------
/**
* Init periodic and delayed; clear periodic and delayed
*/
// /**
// * Init periodic and delayed; clear periodic and delayed
// */
// periodic inter1 ([&]() {
// cout << "periodic prvi " << rtime_ms() - start << endl;
@ -129,34 +125,15 @@ int main () {
// cout << "nije isteko " << endl;
// }
// auto d = Delayed( [](){
// cout << "Delayed" << endl;
// }, 2000);
// auto p = Periodic( [](){
// cout << "Periodic" << endl;
// }, 700);
// // // ------------------------ MAKE FUNCTIONS ASYNCHRONOUS -------------------------
// Periodic( [&] (){
// cout << "Delayed expire " << d->expired() << endl;
// cout << "Periodic ticks " << p->ticks() << endl;
// cout << "Delayed stoped " << d->stoped() << endl;
// cout << "Periodic stoped " << p->stoped() << endl;
// }, 1000);
// Delayed( [&](){
// p->stop();
// }, 10000);
// // // // ------------------------ MAKE FUNCTIONS ASYNCHRONOUS -------------------------
// // /**
// // * Run an function asyncronic
// // */
// /**
// * Run an function asyncronic
// */
// async_ ( []() {
// atask( []() {
// sleep_for(2s); // only for simulate log duration function
// cout << "asynco 1" << endl;
// cout << "atask 1" << endl;
// return 5;
// });
@ -164,51 +141,46 @@ int main () {
// * Call not lambda function
// */
// async_ (notLambdaFunction);
// atask (notLambdaFunction);
// await_ (
// async_ (
// wait (
// atask (
// notLambdaFunction
// )
// );
// // async(launch::async, [] () {
// // cout << "Another thread in async style!" << endl;
// // });
// // /**
// // * Call class method
// // */
// /**
// * Call class method
// */
// clm classes;
// async_ ( [&classes] () {
// atask( [&classes] () {
// classes.classMethode();
// });
// sleep(5);
// // /**
// // * await_ after runned as async
// // */
// /**
// * Wait after runned as async
// */
// auto aa = async_ ( []() {
// auto a = atask( []() {
// sleep_for(2s); // only for simulate log duration function
// cout << "async_ 2" << endl;
// cout << "atask 2" << endl;
// return 5;
// });
// cout << await_(aa) << endl;
// cout << "print after async_ 2" << endl;
// cout << wait(a) << endl;
// cout << "print after atask 2" << endl;
// /**
// * await_ async function call and use i cout
// * Wait async function call and use i cout
// */
// cout << await_(async_ ( [] () {
// cout << wait(atask( [] () {
// sleep_for(chrono::seconds(1)); // only for simulate log duration function
// cout << "await_ end" << endl;
// cout << "wait end" << endl;
// return 4;
// })) << endl;
@ -237,135 +209,81 @@ int main () {
// */
// async_ ( [] {
// atask( [] {
// cout << "idemo ..." << endl;
// async_ ( [] {
// atask( [] {
// cout << "ugdnježdena async funkcija " << endl;
// });
// });
// --------------- EVENTS -------------------
// // -------------------------- AWAIT ALL ----------------------------------
// auto a = async_ ( []() {
// cout << "A" << endl;
// return 3;
// });
// auto b = async_ ( []() {
// cout << "B" << endl;
// throw runtime_error("Test exception");
// return;
// });
// auto c = async_ ( []() {
// cout << "C" << endl;
// return "Hello";
// });
// int a_;
// string c_;
// auto await_all = [&] () {
// a_ = await_(a);
// await_(b);
// c_ = await_(c);
// };
// try {
// await_all();
// cout << "a_ " << a_ << " c_ " << c_ << endl;
// } catch (const exception& exc) {
// cout << exc.what() << endl;
// }
// // // same type
// vector<future<void>> fut_vec;
// for (int i=0; i<5; i++) {
// fut_vec.push_back(
// async_ ( [i]() {
// cout << "Async_ " << i << endl;
// })
// );
// }
// auto await_all2 = [&] () {
// for (int i=0; i<fut_vec.size(); i++) {
// await_ (fut_vec[i]);
// }
// };
/**
* initialization of typed events
*/
// await_all2();
trigger<int, int> ev2int;
trigger<int, string> evintString;
trigger<> evoid;
// // --------------- EVENTS -------------------
ev2int.on("sum", [](int a, int b) {
cout << "Sum " << a+b << endl;
});
// /**
// * initialization of typed events
// */
ev2int.on("sum", [](int a, int b) {
cout << "Sum done" << endl;
});
// trigger<int, int> ev2int;
// trigger<int, string> evintString;
// trigger<> evoid;
evintString.on("substract", [](int a, string b) {
cout << "Substract " << a-stoi(b) << endl;
});
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum " << a+b << endl;
// });
evoid.on("void", []() {
cout << "Void emited" << endl;
});
// ev2int.on("sum", [](int a, int b) {
// cout << "Sum done" << endl;
// });
string emited2 = "2";
// evintString.on("substract", [](int a, string b) {
// cout << "Substract " << a-stoi(b) << endl;
// });
evoid.on("void", [&]() {
cout << "Void emited " << emited2 << endl;
});
// evoid.on("void", []() {
// cout << "Void emited" << endl;
// });
evoid.tick("void");
sleep(1);
// string emited2 = "2";
// evoid.on("void", [&]() {
// cout << "Void emited " << emited2 << endl;
// });
// evoid.tick("void");
// sleep(1);
// /**
// * Emit
// */
/**
* Emit
*/
// ev2int.tick("sum", 5, 8);
ev2int.tick("sum", 5, 8);
// sleep(1);
// evintString.tick("substract", 3, to_string(2));
sleep(1);
evintString.tick("substract", 3, to_string(2));
// sleep(1);
// evoid.off("void");
// evoid.tick("void");
sleep(1);
evoid.off("void");
evoid.tick("void");
// cout << "Ukupno 2 int " << ev2int.listeners() << endl;
// cout << "Ukupno evintString " << evintString.listeners() << endl;
// cout << "Ukupno evoid " << evoid.listeners() << endl;
// cout << "Ukupno 2 int " << ev2int.listeners("sum") << endl;
cout << "Ukupno 2 int " << ev2int.listeners() << endl;
cout << "Ukupno evintString " << evintString.listeners() << endl;
cout << "Ukupno evoid " << evoid.listeners() << endl;
cout << "Ukupno 2 int " << ev2int.listeners("sum") << endl;
// /**
// * Own class
// */
/**
* Own class
*/
// myOwnClass myclass;
myOwnClass myclass;
// delayed t( [&] {
// myclass.tick("constructed", 1);
// }, 200);
delayed t( [&] {
myclass.tick("constructed", 1);
}, 200);
// myclass.on("constructed", [] (int i) {
// cout << "Constructed " << i << endl;
// });
myclass.on("constructed", [] (int i) {
cout << "Constructed " << i << endl;
});
@ -373,7 +291,7 @@ int main () {
// try {
// auto data = await_(status);
// auto data = wait(status);
// cout << data;
// } catch (exception& err) {
// cout << err.what() << endl;

Loading…
Cancel
Save